204 resultados para PEROVSKITE

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonohmic electrical features of (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca-1/4,Cu-3/4)TiO3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generator Coordinate Hartree-Fock (GCHF) method is applied to generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis sets for the 0, Mn, and La atoms, respectively. The role of the weight functions (WFs) in the assessment of the numerical integration range of the GCHF equations is shown. These basis sets are then contracted to [5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d] for La atom by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaan (HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results obtained with the contracted basis sets are compared with values obtained with the extended basis sets. The addition of one d polarization function in the contracted basis set for 0 atom and its utilization with the contracted basis sets for Mn and La atoms leads to the calculations of dipole moment and total atomic charges of perovskite (LaMnO3). The calculations were performed at the HFR level with the crystal [LaMnO3](2) fragment in space group C-2v the values of dipole moment, total energy, and total atomic charges showed that it is reasonable to believe that LaMnO3 presents behaviour of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical activation is one of the most effective method for obtaining highly disperse system due to mechanical action stress fields form in solids during milling procedure. This effect results in changes of free energy, leading to release of heat, formation of a new surface, formation of different crystal lattice defects and initiation of solid-state chemical reaction. The accumulated deformation energy determines irreversible changes of crystal structure and consequently microstructure resulting in the change of their properties. Mechanochemical processing route has been developed recently for the production of intermetallic and alloy compounds. The intrinsic advantage of this process is that the solid-state reaction is activated due to mechanical energy instead of the temperature. It was shown that the chemical reactivity of starting materials could be improved significantly after mechanochemical activation and, subsequently, the calcination temperature was reduced. Besides, it was apparent that the mechanochemical treatment could enhance the reactivity of constituent oxides; however, the sintering process could not be avoided to develop the desired ceramics. A novel mechanochemical technique for synthesis of fine-grained perovskite structured powders has shown that it is possible to form perovskite at room temperature. The effect of milling on the formation of perovskite structure of barium titanate (BT), lead titanate (PT), PZT, PZN, magnesium niobate (PMN) and LM ceramic materials was analyzed. The dielectric properties of sintered ceramics are comparable with those prepared by other methods in the literature. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous report we studied theoretically the piezoelectric effect in barium titanate (BaTiO3) [O. Treu Filho, J.C. Pinheiro, R.T. Kondo, J. Mol. Struct. (THEOCHEM), 671 (2004) 71]. In this article we applied the Hartree-Fock (HF) theory in the investigation of piezoelectricity in LaFeO3. Initially, the generator coordinate HF (GCHF) method was used to build 22s14p, 30s19p13d, and 32s24p17d Gaussian basis sets for O(3p), Fe(D-5), and La(D-2) atoms. Then those basis sets were contracted to [7s6p], [13s8p6d], and [18s13p7d], respectively. The quality of the contracted basis sets in polyatomic calculations was evaluated through calculations of total and orbital energies (HOMO and HOMO-1) of (FeO1+)-Fe-2 and (LaO1+)-La-1. Finally, the contracted basis sets were supplemented with polarization and diffuse functions and used to investigate the piezoelectricity in LaFeO3. The calculated properties were dipole moment, total energy, and atomic charges and the analysis of those properties showed that covalent bonds constitute the electronic structure of [LaFCO3](2) fragment. Therefore, it is reasonable to believe that LaFeO3 does not present piezoelectric properties. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of lead excess on the pyrochlore-type formation in Pb(Mg1/3Nb2/3)O-3 (PMN) powders has been investigated. The polymeric precursor method was used in the synthesis of the columbite in association to the partial oxalate method to synthesize the PMN powder samples. Structure refinement of the columbite precursor and PMN powders was carried out using the Rietveld method. The quantitative phase analysis showed that the amount of perovskite phase is not affected by PbO excess, but a great excess drives the pyrochlore-type formation so that 3 wt.% of PbO causes the predominance of Mg-containing pyrochlore phase. Using the refined data obtained from the Rietveld refinement, the compositional fluctuation in the perovskite phase was calculated from Nb/Mg ratio values and Pb occupation factor. Mg inclusion occurs concomitant with Ph one into PMN perovskite phase and this effect is directed by PbO excess during powder synthesis. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaussian basis sets (24s14p, 30s19p14d, and 33s21p14d for O (P-3), Ti (S-5), and Ba (S-1) atoms, respectively), are designed with the strategy of the Generator Coordinate Hartree-Fock method. The basis sets are then contracted to [6s4p], [10s5p4d], and [16s9p5d] to O, Ti, and Ba atoms, respectively, and used in calculations of total and orbital energies of (TiO+2)-Ti-1 and (BaO)-Ba-1 fragments for quality evaluation in molecular studies. For O atom, the [6s4p] basis set is enriched with d polarization function and used along with the [10s5p4d] and [16s9p5d] basis sets for the theoretical study of the piezoelectric effect of perovskite (BaTiO3). The results of this work evidence that the piezoelectric properties in BaTiO3 can be caused by electrostatic interactions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality (Pb, La)TiO3 ferroelectric thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. The X-ray diffraction patterns show that the films are polycrystalline in nature. This method allows for low temperature (500 degrees C) synthesis, a high quality microstructure and superior dielectric properties. The effects on the microstructure and electrical properties were studied by changing the La content. The films annealed at 500 degreesC have a single perovskite phase with only a tetragonal or pseudocubic structure. As the La content is increased, the dielectric constant of PLT thin films increases from 570 up to 1138 at room temperature. The C-V and P-E characteristics of perovskite thin films prepared at a low temperature show normal ferroelectric behavior, representing the ferroelectric switching property. The remanent polarization and coercive field of the films deposited decreased due to the transformation from the ferroelectric to the paraelectric phase with an increased La content. (C) 2001 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase evolution of lead titanate processed by the polymeric precursor method was investigated by thermal analysis, X-ray diffraction, and high-resolution transmission electron microscopy. The results showed that the cubic perovskite PbTiO3 (PT) phase is formed from an inorganic amorphous precursor at a temperature of 444 °C. A gradual transition from cubic to tetragonal perovskite PT was observed with the increase of calcination time at this temperature. HRTEM results showed that the cubic PT particles have a size of around 5 nm. The identification of cubic PT as an intermediate phase supports the hypothesis that the chemical homogeneity was kept at the molecular level during the synthesis process, with no cation segregation.