13 resultados para Oscillation pressure amplitude
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180° out of phase.
Resumo:
The effects of combustion driven acoustic oscillations in carbon monoxide and nitrogen oxides emission rates of a combustor operated with liquefied petroleum gas (LPG) were investigated. Because the fuel does not contain nitrogen, tests were also conducted with ammonia injected in the fuel, in order to study the formation of fuel NOx. The main conclusions were: (a) the pulsating combustion process is more efficient than the non-pulsating one and (b) the pulsating combustion process generates higher rates of NOx, with and without ammonia injection, as shown by CO and NO concentrations as function of the O-2 concentration. An increase in the LPG flow rate, keeping constant the air to fuel ratio, increased the acoustic pressure amplitude and the frequency of oscillation. The injection of ammonia had no influence on either pressure amplitude or frequency. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The pulsating combustion process has won interest in current research due to indications that its application in energy generation can offer several advantages, such as: fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with conventional techniques. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. The main conclusions were: a) the pulsating combustion process produces more uniform fuel/air profile than the non pulsating process, b) close to stoichiometric equivalence ratio the pulsating combustion process generates higher rates of NO x; c) the frequency has a strong influence in NO x emission, but the pressure amplitude has a weak influence; d) the presence of the acoustic field may change drastically the combustion gas emissions in diffusion flames, but in pre-mixed flames the influence is not as strong.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation, we study the oscillation of the Bose-Einstein condensate (BEC) induced by a periodic variation in the atomic scattering length a. When the frequency of oscillation of a is an even multiple of the radial or axial trap frequency, respectively, the radial or axial oscillation of the condensate exhibits resonance with a novel feature. In this nonlinear problem without damping, at resonance in the steady state the amplitude of oscillation passes through a maximum and minimum. Such a growth and decay cycle of the amplitude may keep on repeating. Similar behaviour is also observed in a rotating BEC.
Resumo:
We report results of a study of the B-s(0) oscillation frequency using a large sample of B-s(0) semileptonic decays corresponding to approximately 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B-s(0) oscillation frequency at 14.8 ps(-1) at the 95% C.L. At Delta m(s)=19 ps(-1), the amplitude deviates from the hypothesis A=0 (1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, Delta m(s), gives a most probable value of 19 ps(-1) and a range of 17
Resumo:
New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Diottix(r) was calibrated at 25 Hz to achieve the frequency indicated in literature as being effective to mobilize the airways secretions. However, the amplitude and frequency of the waves generated by the equipment in different regions of the chest still need to be investigated. The objective of this study was to analyze the frequency and amplitude of waves generated by Diottix(r) in chests of healthy subjects. Diottix(r) was used in the anterior and posterior regions of the chest. The mechanical waves were captured using stethoscopes connected to electret microphones, which were connected to a digital oscilloscope. Frequency and amplitude data were recorded by the stethoscope, positioned in six points in the anterior region and six in the posterior region of the chest, following the positions commonly used in pulmonary auscultation. Signals were recorded and transferred to a computer with software for their analysis. The frequency of waves did not present a significant change (from 24.9 to 26.4 Hz). The wave amplitude in the anterior versus the posterior region in each area of the lung, the upper, middle and lower, had differences. Diottix(r) produces frequencies in the chest according to the calibrated; thus, it can be a complementary resource to bronchial hygiene maneuvers. The amplitudes of waves seem to be affected by other structures like bone parts and heart.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The interaction among heavy interstitial atoms present in metals with bcc structure is studied using anelastic spectroscopy. This technique makes it possible to obtain information on interstitial concentration, precipitation, solubility limit, and diffusion. The diffusion coefficients of nitrogen in niobium were obtained using the relaxation parameters obtained from anelastic spectroscopy measurements for different oscillation frequencies of the system. The results showed the interstitial diffusion of nitrogen present in solid solution in niobium when submitted to different charges of nitrogen at a temperature of 1373 K and a partial pressure in the order of 10-4 Torr. The exponential variation of the pressure experimentally in function of the time was thus obtained.