444 resultados para Orthopedic prostheses
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Because of their low elasticity modulus, titanium alloys have excellent biocompatibility, and are largely used in orthopedic prostheses. Among the properties that are beneficial for use in orthopedic implants is the elasticity modulus, which is closely connected to the crystal structure of the material. Interstitial elements, such as oxygen, change the mechanical properties of the material. Anelastic spectroscopy measurements are a powerful tool for the study of the interaction of these elements with the metallic matrix and substitutional solutes, providing information on the diffusion and concentration of interstitial elements. In this study, the effect of oxygen on the anelastic properties of alloys in the Ti-15Mo-Zr system was analyzed using anelastic spectroscopy measurements. The diffusion coefficients, pre-exponential factors, and activation energies of these alloys were calculated for oxygen.
Resumo:
Titanium alloys have excellent biocompatibility, and combined with their low elastic modulus, become more efficient when applied in orthopedic prostheses. Samples of Ti-15Mo-Zr and Ti-15Zr-Mo system alloys were prepared using an arc-melting furnace with argon atmosphere. The chemical quantitative analysis was performed using an optical emission spectrometer with inductively coupled plasma and thermal conductivity difference. The X-ray diffractograms, allied with optical microscopy, revealed the structure and microstructure of the samples. The mechanical analysis was evaluated by Vickers microhardness measurements. The structure and microstructure of alloys were sensitive to molybdenum and zirconium concentration, presenting α′, α″ and β phases. Molybdenum proved to have greater β-stabilizer action than zirconium. Microhardness was changed with addition of molybdenum and zirconium, having Ti-15Zr-10Mo (436 ± 2 HV) and Ti-15Mo-10Zr (378 ± 4 HV) the highest values in each system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
INTRODUÇÃO: O ximelagatrano foi recentemente estudada para profilaxia do tromboembolismo venoso (TEV). OBJETIVO: Avaliar se o ximelagatrano comparado com a varfarina melhora a profilaxia do TEV em pacientes submetidos à cirurgia ortopédica do joelho. FONTE DE DADOS: Estudos randomizados identificados por pesquisa eletrônica na literatura médica, até 2006, cujos dados foram compilados no programa Review Manager, versão 4.2.5. RESULTADOS: Foram incluídos três estudos randomizados bem conduzidos envolvendo 4.914 participantes. Foram definidos dois sub-grupos com dosagens diferentes de ximelagatrano (24 mg and 36 mg, duas vezes ao dia). O tratamento com ximelagatrano mostrou freqüência significantemente menor de TEV que o tratamento com varfarina, mas somente na dosagem de 36-mg [risco relativo, RR 0.72 ([intervalo de confiança, IC, 95% 0.64, 0.81), p < 0.00001]. A freqüência de TEV no sub-grupo de 24-mg foi similar a da varfarina [RR 0.86 (IC 95% 0.73, 1.01), p = 0.06]. Para TEV maior, embolia pulmonar, sangramento e sangramento maior não houve diferença entre varfarina e a ximelagatrano. Ao final do tratamento, a elevação da alanino-aminotransferase (ALT) foi menos freqüente no sub-grupo de 24 mg de ximelagatrano que no grupo da varfarina [RR 0.33 (IC 95% 0.12, 0.91) p = 0.03], mas no período de acompanhamento essa elevação foi maior com 36 mg de ximelagatrano [RR 6.97 (IC 95% 1.26, 38.50) p = 0.03]. CONCLUSÃO: O ximelagatrano foi mais efetivo que a varfarina quando usado em dosagens maiores (36 mg, 2 vezes ao dia), mas às expensas de aumento de enzimas hepáticas no período de acompanhamento.
Resumo:
Fios de sutura de náilon (0, 3-0 e 4-0), poliéster trançado (0, 3-0 e 4-0) e polipropileno (0, 3-0 e 4-0) de 7 marcas comercializadas no Brasil, foram submetidos a análise de diâmetro, comprimento, resistência do encastoamento, resistência à tração do fio sem nó e resistência à tração do fio com nó, segundo metodologia padronizada pela Associação Brasileira de Normas Técnicas (ABNT). Os resultados obtidos indicam que a maioria dos fios testados encontra-se dentro dos valores preconizados pela ABNT.
Resumo:
The aim of this study was to present the factors that influence planning for immediate loading of implants through a literature review for treatment success. Research was conducted in the PubMed database including the key words immediate implant loading, implant-supported prostheses, and implant planning for studies published from 2000 to 2011. Forty-eight articles were used in this review to describe the indications and counterindications, presurgical planning, and technologies available for planning of this treatment alternative.
Resumo:
Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.
Resumo:
Purpose:The purpose of this study was to evaluate stress transfer patterns between implant-tooth-connected prostheses comparing rigid and semirigid connectors and internal and external hexagon implants.Materials and Methods:Two models were made of photoelastic resin PL-2, with an internal hexagon implant of 4.00 x 13 mm and another with an external hexagon implant of 4.00 x 13 mm. Three denture designs were fabricated for each implant model, incorporating one type of connection in each one to connect implants and teeth: 1) welded rigid connection; 2) semirigid connection; and 3) rigid connection with occlusal screw. The models were placed in the polariscope, and 100-N axial forces were applied on fixed points on the occlusal surface of the dentures.Results:There was a trend toward less intensity in the stresses on the semirigid connection and solid rigid connection in the model with the external hexagon; among the three types of connections in the model with the internal hexagon implant, the semirigid connection was the most unfavorable one; in the tooth-implant association, it is preferable to use the external hexagon implant.Conclusions:The internal hexagon implant establishes a greater depth of hexagon retention and an increase in the level of denture stability in comparison with the implant with the external hexagon. However, this greater stability of the internal hexagon generated greater stresses in the abutment structures. Therefore, when this association is necessary, it is preferable to use the external hexagon implant.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objectives of this study were, through a literature review, to point the differences between orbital implants and their advantages and disadvantages, to evaluate prosthesis motility after orbital implants are inserted, and to point the implant wrapping current risks. Sixty-seven articles were reviewed. Enucleation implants can be autoplastics or alloplastics and porous (including natural and synthetic hydroxyapatite [HA]) or nonporous (silicone). Hydroxyapatite is the most related in the literature, but it has disadvantages, too, that is, all orbital implants must be wrapped. Exposure of the porous orbital implant can be repaired using different materials, which include homologous tissue, as well as autogenous graft, xenograft, and synthetic material mesh. The most used materials are HA and porous polyethylene orbital implant. The HA implant is expensive and possibly subject corals to damage, different from porous polyethylene orbital implants. Porous implants show the best prosthesis motility and a minimum rate of implants extrusion. Implant wraps can facilitate smoother entry of the implant into the orbit and allow reattachment of extraocular muscles. They also serve as a barrier between the overlying soft tissue and the rough surface of the implant, protecting implants from exposure or erosion.