7 resultados para Orbiting astronomical observatories
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. In this work, we introduce a new low-cost orbital transfer strategy that opportunistically combine chaotic and swing-by transfers to get a very efficient strategy that can be used for servicing mission on astronomical mission placed on Lagrangian points L4 or L5. This strategy is not only efficient with respect to thrust requirement, but also its time transfer is comparable to others known transfer techniques based on time optimization. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article considers some potential of activities developed in non-formal education in astronomy, like astronomical observatories and other related establishments. This kind of research is less explored in our country. We present, in this text, a model to study possible relations among these kinds of communities: the scientific, the amateur and the professional, applicable in astronomical observatories, in a motion against the local and punctual activities dispersion and pulverization of these establishments, and against the use of common sense to develop their activities, aiming the advancement of the astronomy education and its national research.
Resumo:
The evolution of the velocity of the particles with respect to the circular orbits of satellites that are around the Earth that the particles will cross, suggests a range of possible velocities of impact as a function of the altitude of the satellite. A study made from those results show that the maximum relative velocities occur at the semi-latus rectum, independent of the initial semi-major axis of the particle. Considering both the solar radiation pressure and the oblateness of the Earth, it is visible that a precession in the orbit occurs and there is also a variation in the eccentricity of the particle as a function of its orbital region and its size. This is important information, because the damage caused in a spacecraft depends on the impact velocity.
Resumo:
2001 SN263 is a triple system asteroid. Although it was discovery in 2001, in 2008 astronomical observation carried out by Arecibo observatory revealed that it is actually a system with three bodies orbiting each other. The main central body is an irregular object with a diameter about 2.8 km, while the other two are small objects with less than 1 km across. This system presents an orbital eccentricity of 0.47, with perihelion of 1.04 and aphelion of 1.99, which means that it can be considered as a Near Earth Object. This interesting system was chosen as the target for the Aster mission - first Brazilian space exploration undertaking. A small spacecraft with 150 kg of total mass, 30 kg of payload with 110 W available for the instruments, is scheduled to be launched in 2015, and in 2018 it will approach and will be put in orbit of the triple system. This spacecraft will use electric propulsion and in its payload it will carry image camera, laser rangefinder, infrared spectrometer, mass spectrometer, and experiments to be performed in its way to the asteroid. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission, including the transfer trajectories to be used, and details of buss and payload subsystems that are being developed and will be used. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)