5 resultados para Orbital transfer

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. In this work, we introduce a new low-cost orbital transfer strategy that opportunistically combine chaotic and swing-by transfers to get a very efficient strategy that can be used for servicing mission on astronomical mission placed on Lagrangian points L4 or L5. This strategy is not only efficient with respect to thrust requirement, but also its time transfer is comparable to others known transfer techniques based on time optimization. Copyright ©2010 by the International Astronautical Federation. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of escape/capture is encountered in many problems of the celestial mechanics -the capture of the giants planets irregular satellites, comets capture by Jupiter, and also orbital transfer between two celestial bodies as Earth and Moon. To study these problems we introduce an approach which is based on the numerical integration of a grid of initial conditions. The two-body energy of the particle relative to a celestial body defines the escape/capture. The trajectories are integrated into the past from initial conditions with negative two-body energy. The energy change from negative to positive is considered as an escape. By reversing the time, this escape turns into a capture. Using this technique we can understand many characteristics of the problem, as the maximum capture time, stable regions where the particles cannot escape from, and others. The advantage of this kind of approach is that it can be used out of plane (that is, for any inclination), and with perturbations in the dynamics of the n-body problem. © 2005 International Astronomical Union.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramolecular proton transfer from oxygen to nitrogen atoms in the alpha-alanine amino acid has been studied by ab initio methods at the HF/6-31G*, HF/6-31 ++ G** and MP2/6-31 ++ G** levels of calculation including the solvent effects by means of self-consistent reaction field theory. An analysis of the results based on the natural bond orbital charges shows that the transition structure presents an imbalance in the sense that the charge shift lags behind the proton transfer and that the bond formation is always in advance with respect to the bond cleavage. All calculation levels show that the barrier height associated with the conformational change on alpha-alanine is larger than the proton transfer process. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of a specific orbit and the procedure to calculate orbital maneuvers of artificial satellites are problems of extreme importance in the study of orbital mechanics. Therefore, the transferring problem of a spaceship from one orbit to another, and the attention due to this subject has in increased during the last years. Many applications can be found in several space activities, for example, to put a satellite in a geostationary orbit, to change the position of a spaceship, to maintain a specific satellite's orbit, in the design of an interplanetary mission, and others. The Brazilian Satellite SCD-1 (Data Collecting Satellite) will be used as example in this paper. It is the first satellite developed entirely in Brazil, and it remains in operation to this date. SCD-1 was designed, developed, built, and tested by Brazilian scientists, engineers, and technicians working at INPE (National Institute for Space Research, and in Brazilian Industries. During the lifetime, it might be necessary do some complementary maneuvers, being this one either an orbital transferring, or just to make periodical corrections. The purpose of transferring problem is to change the position, velocity and the satellite's mass to a new pre determined state. This transfer can be totally linked (in the case of "Rendezvous") or partially free (free time, free final velocity, etc). In the global case, the direction, the orientation and the magnitude of the thrust to be applied must be chosen, respecting the equipment's limit. In order to make this transferring, either sub-optimal or optimal maneuvers may be used. In the present study, only the sub-optimal will be shown. Hence, this method will simplify the direction of thrust application, to allow a fast calculation that may be used in real time, with a very fast processing. The thrust application direction to be applied will be assumed small and constant, and the purpose of this paper is to find the time interval that the thrust is applied. This paper is basically divided into three parts: during the first one the sub-optimal maneuver is explained and detailed, the second presents the Satellite SCD-1, and finally the last part shows the results using the sub-optimal maneuver applied to the Brazilian Satellite.