3 resultados para Optimal Protection Policy

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work concerns the application of the optimal control theory to Dengue epidemics. The dynamics of this insect-borne disease is modelled as a set of non-linear ordinary differential equations including the effect of educational campaigns organized to motivate the population to break the reproduction cycle of the mosquitoes by avoiding the accumulation of still water in open-air recipients. The cost functional is such that it reflects a compromise between actual financial spending (in insecticides and educational campaigns) and the population health (which can be objectively measured in terms of, for instance, treatment costs and loss of productivity). The optimal control problem is solved numerically using a multiple shooting method. However, the optimal control policy is difficult to implement by the health authorities because it is not practical to adjust the investment rate continuously in time. Therefore, a suboptimal control policy is computed assuming, as the admissible set, only those controls which are piecewise constant. The performance achieved by the optimal control and the sub-optimal control policies are compared with the cases of control using only insecticides when Breteau Index is greater or equal to 5 and the case of no-control. The results show that the sub-optimal policy yields a substantial reduction in the cost, in terms of the proposed functional, and is only slightly inferior to the optimal control policy. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On-line learning methods have been applied successfully in multi-agent systems to achieve coordination among agents. Learning in multi-agent systems implies in a non-stationary scenario perceived by the agents, since the behavior of other agents may change as they simultaneously learn how to improve their actions. Non-stationary scenarios can be modeled as Markov Games, which can be solved using the Minimax-Q algorithm a combination of Q-learning (a Reinforcement Learning (RL) algorithm which directly learns an optimal control policy) and the Minimax algorithm. However, finding optimal control policies using any RL algorithm (Q-learning and Minimax-Q included) can be very time consuming. Trying to improve the learning time of Q-learning, we considered the QS-algorithm. in which a single experience can update more than a single action value by using a spreading function. In this paper, we contribute a Minimax-QS algorithm which combines the Minimax-Q algorithm and the QS-algorithm. We conduct a series of empirical evaluation of the algorithm in a simplified simulator of the soccer domain. We show that even using a very simple domain-dependent spreading function, the performance of the learning algorithm can be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this article is to analyze the policy implanted in the schools in the State of São Paulo, Brazil, with a view to the prevention and intervention in the violence that occurs in the schools. The importance of such discussion is related to the analysis of the principles that are present and of the possible effectiveness of such a program in the school violence. This research is qualitative and the research methodology used was documentary analysis. The documents analyzed were those related to the policy of preventing violence in schools in the state of São Paulo/Brazil, called Protection System School. (C) 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of The Association of Science, Education and Technology