7 resultados para Optical elements
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The feasibility of Portland cement analysis by introduction of slurries in an inductively coupled plasma optical emission spectrometer (ICP-OES) with axial viewing has been evaluated. After a fast manual grinding of the cement samples, owing to the pulverized state of this material, 0.1% m/v slurries were prepared in 1% v/v HCl. The calibration was performed adopting two strategies: one based on slurries prepared from different masses (50, 75, 100 and 125 mg) of a Portland cement standard reference material (NIST SRM 1881), and the other one based on aqueous reference solutions. A complete analysis of cement for major (Al, Ca, Fe, Mg and Si), minor and trace elements (Mn, P, S, Sr and Ti) was accomplished. Both strategies led to accurate results for commercial Portland cement samples, except for Si and Ti. for which the calibration with aqueous reference solutions resulted in low values. Applying a paired t-test it was shown that most results were in agreement at a 95% confidence level with a conventional fusion decomposition procedure. The ICP-OES with axial viewing and end-on gas configuration for removal of the recombination plasma zone was effective for cement slurry analysis without any undesirable particle deposition in the pre-optics interface and without severe spectral interferences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work presents studies of GeO2-PbO thin films deposited by RF Sputtering for fabrication of rib-waveguide. GeO2-PbO vitreous targets were prepared melting the reagents in alumina crucible. Thin films were deposited at room temperature using pure Ar plasma, at 5 mTorr pressure and RF power of 40 W on substrates of (100) silicon wafers. Rutherford Backscattering Spectroscopy (RBS) analyses were employed for the determination of the chemical elements present in the GeO2-PbO film. Geometry and sidewall of the waveguides were investigated by Scanning Electron Microscopy (SEM). The mode propagation in the waveguide structure of GeO2-PbO thin films was analyzed using an integrated optic simulation software to obtain a monomode propagation. © The Electrochemical Society.
Resumo:
Augmented Reality (AR) systems which use optical tracking with fiducial marker for registration have had an important role in popularizing this technology, since only a personal computer with a conventional webcam is required. However, in most these applications, the virtual elements are shown only in the foreground a real element does not occlude a virtual one. The method presented enables AR environments based on fiducial markers to support mutual occlusion between a real element and many virtual ones, according to the elements position (depth) in the environment. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.
Resumo:
Titanium alloys have excellent biocompatibility, and combined with their low elastic modulus, become more efficient when applied in orthopedic prostheses. Samples of Ti-15Mo-Zr and Ti-15Zr-Mo system alloys were prepared using an arc-melting furnace with argon atmosphere. The chemical quantitative analysis was performed using an optical emission spectrometer with inductively coupled plasma and thermal conductivity difference. The X-ray diffractograms, allied with optical microscopy, revealed the structure and microstructure of the samples. The mechanical analysis was evaluated by Vickers microhardness measurements. The structure and microstructure of alloys were sensitive to molybdenum and zirconium concentration, presenting α′, α″ and β phases. Molybdenum proved to have greater β-stabilizer action than zirconium. Microhardness was changed with addition of molybdenum and zirconium, having Ti-15Zr-10Mo (436 ± 2 HV) and Ti-15Mo-10Zr (378 ± 4 HV) the highest values in each system.