135 resultados para Optical Cooling Of Atoms

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of an attractive Bose-Einstein condensate on a joint one-dimensional optical lattice and an axially symmetrical harmonic trap is studied using the numerical solution of the time-dependent mean-field Gross-Pitaevskii equation and the critical number of atoms for a stable condensate is calculated. We also calculate this critical number of atoms in a double-well potential which is always greater than that in an axially symmetrical harmonic trap. The critical number of atoms in an optical trap can be made smaller or larger than the corresponding number in the absence of the optical trap by moving a node of the optical lattice potential in the axial direction of the harmonic trap. This variation of the critical number of atoms can be observed experimentally and compared with the present calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of stability and collapse of a trapped atomic Bose-Einstein condensate (BEC) coupled to a molecular one is studied using the time-dependent Gross-Pitaevskii (GP) equation including a nonlinear interaction term which can transform two atoms into a molecule and vice versa. We find an interesting oscillation of the number of atoms and molecules for a BEC of fixed mass. This oscillation is a consequence of continuous transformation in the condensate of two atoms into a molecule and vice versa. For the study of collapse an absorptive contact interaction and an imaginary quartic three-body recombination term are included in the GP equation. It is possible to have a collapse of one or both components when one or more of the nonlinear terms in the GP equation are attractive in nature, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical number of atoms for Bose-Einstein condensates with cylindrically symmetrical traps were calculated. The time evolution of the condensate was also studied at changing ground state. A conjecture on higher-order nonlinear effects was also discussed to determine its signal and strength. The results show that by exchanging frequencies, the geometry favors the condensation of larger number of particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoassociation is a possible route for the formation of chemical bonds. In this process, the binding of colliding atoms can be induced by means of a laser field. Photoassociation has been studied in the ultracold regime and also with temperatures well above millikelvins in the thermal energy domain, which is a situation commonly encountered in the laboratory. A photoassociation mechanism can be envisioned based on the use of infrared pulses to drive a transition from free colliding atoms on the electronic ground state to form a molecule directly on that state. This work takes a step in this direction, investigating the laser-pulse-driven formation of heteronuclear diatomic molecules in a thermal gas of atoms including rotational effects. Based on the assumption of full system controllability, the maximum possible photoassociation yield is deduced. The photoassociation probability is calculated as a function of the laser parameters for different temperatures. Additionally, the photoassociation yield induced by subpicosecond pulses of a priori fixed shape is compared to the maximum possible yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R(C), which was varied from 0 to 80%. Deposition rates of 80 nm min (1) were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at similar to 47 at.% for R(C)>= 40%. The refractive index and optical gap, E(04), of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from similar to 40 degrees to similar to 77 degrees. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)