29 resultados para OXIDATIVE RADICAL REACTIONS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N6,2,2,2][N(Tf)2], 1-butyl-3-methylimidazolium hexafluorosphosphate [C4mim][PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4mpyrr][N(Tf)2], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][N(Tf)2], N-butyl-N-methyl-pyrrolidinium dicyanamide [C4mpyrr][N(NC)2] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P14,6,6,6][FAP] on a platinum microelectrode. In [N6,2,2,2][NTf2] and [P14,6,6,6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P14,6,6,6][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N6,2,2,2][NTf2] and [P14,6,6,6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. © 2009 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Farmacêuticas - FCFAR

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is abundant evidence that reactive oxygen species are implicated in several physiological and pathological processes. To protect biological targets from oxidative damage. antioxidants must react with radicals and other reactive species faster than biological substrates do. The aim of the present study was to determine the in vitro antioxidant activity of aqueous extracts from leaves of Bauhinia forficata Link (Fabaceae - Caesalpinioideae) and Cissus sicyoides L. (Vitaceae) (two medicinal plants used popularly in the control of diabetes mellitus), using several different assay systems, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) decolorization. superoxide anion radical (O-2 center dot-) scavenging and myeloperoxidase (MPO) activity. In the ABTS assay for total antioxidant activity, B. forficata showed IC50 8.00 +/- 0.07 mu g/mL, while C. sicyoides showed IC50 13.0 +/- 0.2 mu g/mL. However, the extract of C. sicyoides had a stronger effect on O-2 center dot- (IC50 60.0 +/- 2.3 mu p/mL) than the extract of B. forficata (IC50 90.0 +/- 4.4 mu g/mL). B. forficata also had a stronger inhibitory effect on MPO activity, as measured by guaiacol oxidation, than C. sicyoides. These results indicate that aqueous extracts of leaves of B. forficata and C. sicyoides are a potential source of natural antioxidants and may be helpful in the prevention of diabetic complications associated with oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a g-rowing body of evidence that melatonin and its oxidation product, N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5. 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin a dimer of, 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. on the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: the potential pathogenicity of free radicals may have a pivotal role in ulcerative colitis. Fish oil omega-3 fatty acids exert anti-inflammatory effects on patients with ulcerative colitis (UC), but the precise mechanism of the action of fish oil on oxidative stress is still controversial. The aim of the present work was to verify the blood oxidative stress in patients with UC and determine whether the association of sulfasalazine to fish oil omega-3 fatty acids is more effective than isolated use of sulfasalazine to reduce the oxidative stress.METHODS:, Nine patients (seven female and two male; me. an age = 40 +/- 11 y) with mild or moderate active UC were studied in a randomized crossover design. In addition to their usual medication (2 g/d of sulfasalazine), they received fish oil omega-3 fatty acids (4.5 g/d) or placebo for 2-mo treatment periods that were separated by 2 mo, when they only received sulfasalazine. Nine healthy individuals served as control subjects to study the oxidative stress status. Disease activity was assessed by laboratory indicators (C-reactive protein, alpha(1)-acid glycoprotein, alpha(1)-antitrypsin, erythrocyte sedimentation rate, albumin, hemoglobin, and platelet count), sigmoidoscopy, and histology scores. Analysis of oxidative stress was assessed by plasma chemiluminescence and erythrocyte lipid peroxidation, both induced by tert butyl hydroperoxide (t-BuOOH) and by plasma malondialdehyde. Antioxidant status was assayed by total plasma antioxidant capacity (TRAP) and microsomal lipid peroxidation inhibition (LPI). Superoxide dismutase (SOD) and catalase erythrocyte enzymatic activities were also determined.RESULTS: No significant changes were observed in any laboratory indicator or in the sigmoidoscopy or histology scores, with the exception of erythrocyte sedimentation rate, which decreased with both treatments. Oxidative stress was demonstrated by significant decreases in TRAP and LPI levels, increased chemiluminescence induced by t-BuOOH, and higher SOD activity in patients with UC. Treatment with fish oil omega-3 fatty acids reverted the chemiluminescence induced by t-BuOOH and LPI to baseline levels but that did not occur when patients received only sulfasalazine. Levels of plasma malondialdehyde, erythrocyte lipid peroxidation, and catalase were not different from those in the control group.CONCLUSIONS: the results indicated that plasma oxidative stress occurs in patients with UC, and there was a significant decrease when the patients used sulfasalazine plus fish oil omega-3 fatty acids. However, there was no improvement in most laboratory indicators, sigmoidoscopy, and histology scores. The results suggested that omega-3 fatty acids may act as free radical scavengers protecting the patients against the overall effect of oxidative stress. (C)Elsevier B.V. 2003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal. (C) 2000 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of the hexacyanoferrate(III)-N,N′-dimethyl-4,4′-bipyridinium radical (MV+) reaction was studied by a laser flash photolysis technique. The radical was generated, in the presence of Fe(CN)6 3-, by quenching the excited state *Ru(bpy)3 2+ with MV2+. The second-order rate constant for the Fe(CN)6 3--MV+ reaction is (7.6 ± 0.5) × 109 M-1 s-1 at 23°C and ionic strength 0.10 M. Comparison with the rate constants calculated for the diffusion-controlled reaction (4.7 × 109 M-1 s-1) and the activation-controlled reaction (5.2 × 1012 M-1 s-1, on the basis of self-exchange rate constants of 8.0 × 105 M-1 s-1 and 1.9 × 104 M-1 s-1 for the MV2+/+ and Fe(CN)6 3-/4- couples, respectively) leads to the conclusion that the Fe(CN)6 3--MV+ reaction is diffusion controlled. The rate constant for the Fe(CN)6-MV2+ reaction, calculated from the rate constant for the Fe(CN)6 3--MV+ reaction and the appropriate equilibrium constant, is 2.4 × 10-5 M-1 s-1 at 23°C and ionic strength 0.10 M. Microscopic reversibility considerations require that the Fe(CN)6 4--MV2+ reaction be controlled by the dissociation of the successor complex Fe(CN)6 3-|MV+. The thermal and optical electron transfers in the ion pair Fe(CN)6 4-|MV2+ and in related systems are analyzed and discussed. © 1982 American Chemical Society.