91 resultados para OSTEOBLASTS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
During bone formation, as in other tissues and organs, intense cellular proliferation and differentiation are usually observed. It has been described that programmed cell death, i.e., apoptosis, takes place in the control of the cellular population by removing of the excessive and damaged cells. Although it is generally accepted that apoptotic bodies are engulfed by professional phagocytes, the neighboring cells can also take part in the removal of apoptotic bodies. In the present study, regions of initial alveolar bone formation of rat molars were examined with the aim to verify whether osteoblasts are capable of engulfing apoptotic bodies, such as professional phagocytes. Rats aged 11-19 days were sacrificed and the maxillary fragments containing the first molar were removed and immersed in the fixative solution. The specimens fixed in glutaraldehyde-formaldehyde were processed for light microscopy and transmission electron microscopy. For the detection of apoptosis, the specimens were fixed in formaldehyde, embedded in paraffin, and submitted to the TUNEL method. The results revealed round/ovoid structures containing dense bodies on the bone surface in close contact to osteoblasts and in conspicuous osteoblast vacuoles. These round/ovoid structures showed also positivity to the TUNEL method, indicating that bone cells on the bone surface are undergoing apoptosis. Ultrathin sections showed images of apoptotic bodies being engulfed by osteoblasts. Occasionally, the osteoblasts exhibited large vacuoles containing blocks of condensed chromatin and remnants of organelles. Thus, these images suggest that osteoblasts are able to engulf and degrade apoptotic bodies. (c) 2005 Wiley-Liss, Inc.
Resumo:
Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Resident, non-immune cells express various pattern-recognition receptors and produce inflammatory cytokines in response to microbial antigens, during the innate immune response. Alveolar bone resorption is the hallmark of destructive periodontitis and it is caused by the host response to bacteria and their mediators present on the biofilm. The balance between the expression levels of receptor activator of nuclear factorkappa B ligand (RANKL) and osteoprotegerin (OPG) is pivotal for osteoclast differentiation and activity and has been implicated in the progression of bone loss in periodontitis. To assess the contribution of resident cells to the bone resorption mediated by innate immune signaling, we stimulated fibroblasts and osteoblastic cells with LPS from. Escherichia coli (TLR4 agonist), Porphyromonas gingivalis (TLR2 and -4 agonist), and interleukin-1 beta (as a control for cytokine signaling through Toll/IL-1receptor domain) in time-response experiments. Expression of RANKL and OPG mRNA was studied by RT-PCR, whereas the production of RANKL protein and the activation of p38 MAPK and NF-kB signaling pathways were analyzed by western blot. We used biochemical inhibitors to assess the relative contribution of p38 MAPK and NF-kB signaling to the expression of RANKL and OPG induced by TLR2, -4 and IL1β in these cells. Both p38 MAPK and NFkB pathways were activated by these stimuli in fibroblasts and osteoblasts, but the kinetics of this activation varied in each cell type and with the nature of the stimulation. E. coli LPS was a stronger inducer of RANKL mRNA in fibroblasts, whereas LPS from P. gingivalis downregulated RANKL mRNA in periodontal ligament cells but increased its expression in osteoblasts. IL-1β induced RANKL in both cell types and without a marked effect on OPG expression. p38 MAPK was more relevant than NF-kB for the expression of RANKL and OPG in these cell types.
Resumo:
Objectives: This report highlights phytoconstituents present in Cissus quadrangularis (CQ) extract and examines biphasic (proliferative and anti-proliferative) effects of its extract on bone cell proliferation, differentiation, mineralization, ROS generation, cell cycle progression and Runx2 gene expression in primary rat osteoblasts. Materials and methods: Phytoconstituents were identified using gas chromatography-mass spectroscopy (GC-MS). Osteoblasts were exposed to different concentrations (10-100g/ml) of CQ extract and cell proliferation and cell differentiation were investigated at different periods of time. Subsequently, intracellular ROS intensity, apoptosis and matrix mineralization of osteoblasts were evaluated. We performed flow cytometry for DNA content and real-time PCR for Runx2 gene expression analysis.Results: CQ extract's approximately 40 bioactive compounds of fatty acids, hydrocarbons, vitamins and steroidal derivatives were identified. Osteoblasts exposed to varying concentrations of extract exhibited biphasic variation in cell proliferation and differentiation as a function of dose and time. Moreover, lower concentrations (10-50g/ml) of extract slightly reduced ROS intensity, although they enhanced matrix mineralization, DNA content in S phase of the cell cycle, and levels of Runx2 expression. However, higher concentrations (75-100g/ml) considerably induced the ROS intensity and nuclear condensation in osteoblasts, while it reduced mineralization level, proportion of cells in S phase and Runx2 level of the osteogenic gene.Conclusions: These findings suggest that CQ extract revealed concentration-dependent biphasic effects, which would contribute notably to future assessment of pre-clinical efficacy and safety studies.
Resumo:
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.
Resumo:
Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MWr of about 120 kDa and specific PNPP activity of 1200 U/tng. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/ mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 Wing), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and (3glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Osteoclastogenesis may be regulated via activation of the RANK/RANKL (receptor activator of nuclear factor-kappa B/ receptor activator of nuclear factor-kappa B ligand) system, which is mediated by osteoblasts. However, the bone loss mechanism induced by T3 (triiodothyronine) is still controversial. In this study, osteoblastic lineage rat cells (ROS 17/2.8) were treated with T3 (10(-8) M 10(-9) 10 M, and 10(-10) M), and RANKL mRNA (messenger RNA) expression was measured by semiquantitative RT-PCR. Our results show that T3 concentrations used did not significantly enhance RANKL expression compared to controls without hormone treatment. This data suggests that other mechanisms, unrelated to the RANK/RANKL system, might be to activate osteoclast differentiation in these cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)