5 resultados para Numerical error
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
O desenvolvimento de projetos relacionados ao desempenho de diversas culturas tem recebido aperfeiçoamento cada vez maior, incorporado a modelos matemáticos sendo indispensável à utilização de equações cada vez mais consistentes que possibilitem previsão e maior aproximação do comportamento real, diminuindo o erro na obtenção das estimativas. Entre as operações unitárias que demandam maior estudo estão aquelas relacionadas com o crescimento da cultura, caracterizadas pela temperatura ideal para o acréscimo de matéria seca. Pelo amplo uso dos métodos matemáticos na representação, análise e obtenção de estimativas de graus-dia, juntamente com a grande importância que a cultura da cana-de-açúcar tem para a economia brasileira, foi realizada uma avaliação dos modelos matemáticos comumente usados e dos métodos numéricos de integração na estimativa da disponibilidade de graus-dia para essa cultura, na região de Botucatu, Estado de São Paulo. Os modelos de integração, com discretização de 6 em 6 h, apresentaram resultados satisfatórios na estimativa de graus-dia. As metodologias tradicionais apresentaram desempenhos satisfatórios quanto à estimativa de grausdia com base na curva de temperatura horária para cada dia e para os agrupamentos de três, sete, 15 e 30 dias. Pelo método numérico de integração, a região de Botucatu, Estado de São Paulo, apresentou disponibilidade térmica anual média de 1.070,6 GD para a cultura da cana-de-açúcar.
Resumo:
An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10(10) after some 8-10 iterations.
Resumo:
This work considers a problem of interest in several technological applications such as the thermal control of electronic equipment. It is also important to study the heat transfer performance of these components under off-normal conditions, such as during failure of cooling fans. The effect of natural convection on the flow and heat transfer in a cavity with two flush mounted heat sources on the left vertical wall, simulating electronic components, is studied numerically and experimentally. The influence of the power distribution, spacing between the heat sources and cavity aspect ratio have been investigated. An analysis of the average Nusselt number of the two heat sources was performed to investigate the behavior of the heat transfer coefficients. The results obtained numerically and experimentally, after an error analysis, showed a good agreement.
Resumo:
Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.
Resumo:
A numerical study of mass conservation of MAC-type methods is presented, for viscoelastic free-surface flows. We use an implicit formulation which allows for greater time steps, and therefore time marching schemes for advecting the free surface marker particles have to be accurate in order to preserve the good mass conservation properties of this methodology. We then present an improvement by using a Runge-Kutta scheme coupled with a local linear extrapolation on the free surface. A thorough study of the viscoelastic impacting drop problem, for both Oldroyd-B and XPP fluid models, is presented, investigating the influence of timestep, grid spacing and other model parameters to the overall mass conservation of the method. Furthermore, an unsteady fountain flow is also simulated to illustrate the low mass conservation error obtained.