134 resultados para Neurovascular coupling

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we study the effect of the nonminimal coupling j(mu)epsilon(munualpha)partial derivative(nu)A(alpha) on the static potential in multiflavor QED(3). Both cases of four and two components fermions are studied separately at leading order in the 1/N expansion. Although a nonlocal Chern-Simons term appears, in the four components case the photon is still massless leading to a confining logarithmic potential similar to the classical one. In the two components case, as expected, the parity breaking fermion mass term generates a traditional Chern-Simons term which makes the photon massive and we have a screening potential which vanishes at large intercharge distance. The extra nonminimal couplings have no important influence on the static potential at large intercharge distances. However, interesting effects show up at finite distances. In particular, for strong enough nonminimal coupling we may have a new massive pole in the photon propagator, while in the opposite limit there may be no poles at all in the irreducible case. We also found that, in general, the nonminimal couplings lead to a finite range repulsive force between charges of opposite signs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the contribution of the isoscalar tensor coupling to the realization of pseudospin symmetry in nuclei. Using realistic values for the tensor coupling strength, we show that this coupling reduces noticeably the pseudospin splittings, especially for single-particle levels near the Fermi surface. By using an energy. decomposition of the pseudospin energy splittings, we show that the changes in these splittings come mainly through the changes induced in the lower radial wave function for the low-lying pseudospin partners and through changes in the expectation value of the pseudospin-orbit coupling term for surface partners. This allows us to confirm the conclusion already reached in previous studies, namely that the pseudospin symmetry in nuclei is of a dynamical nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Duffin-Kemmer-Petiau (DKP) equation, in the scalar sector of the theory and with a linear nominimal vector potential, is mapped into the nonrelativistic harmonic oscillator problem. The behavior of the solutions for this sort of vector DKP oscillator is discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V(v) + V(s) = constant. These intrinsically relativistic and isospectral problems are solved in the case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to examine coupling between visual information and body sway in children and young adults at various distances from a moving room front wall. Sixty children (from 4 to 14 years old) and 10 young adults stood upright inside a moving room that was oscillated at .2 and .5 Hz, at distances of .25, .5, 1, and 1.5 m from a front wall. Visual information induced body sway in all participants in all conditions. Young children swayed more than older participants, whether the moving room was oscillated or not. Coupling between visual information and body sway became stronger and the room movement influence became weaker with age. Up to the age of 10, coupling strength between visual information and body sway and the room movement influence were distance dependent. Postural control development appears to be dependent on how children reweight the contribution of varying sensory cues available in environment in order to control body sway. (C) 2007 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the strength of the trilinear Higgs boson coupling in technicolor (or composite) models in a model independent way. The coupling is determined as a function of a very general ansatz for the technicolor self-energy, and turns out to be equal or smaller than the one of the Standard Model Higgs boson depending on the dynamics of the theory. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charmed (and bottom) hypernuclei are studied in the quark-meson coupling (QMC) model. This completes systematic studies of charmed (Lambda(c)(+), Sigma(c), Xi(c)), and Lambda(b) hypernuclei in the QMC model. Effects of the Pauli blocking due to the underlying quark structure of baryons, and the Sigma(c)N-Lambda(c)N channel coupling are phenomenologically taken into account at the hadronic level in the same way as those included for strange hypernuclei. Our results suggest that the Sigma(c)(++) and Xi(c)(+) hypernuclei are very unlikely to be formed. while the Lambda(c)(+), Xi(c)(0) and Lambda(b) hypernuclei are quite likely to be formed. For the Sigma(c)(+) hypernuclei, the formation probability is non-zero, though small. A detailed analysis is also made about the phenomenologically introduced Pauli blocking and channel coupling effects for the Sigma(c)(0) hypernuclei.