4 resultados para Neurotensin

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endopeptidase 22.19 (EC 3.4.22.19) has been associated with the metabolism of neuropeptides by its ability to convert small enkephalin-containing peptides (8 to 13 amino acids) into enkephalins. In addition, this enzyme cleaves the Arg8-Arg9 bond of neurotensin and the Phe5-Ser6 bond of bradykinin. We analyzed the circadian variation of endopeptidase 22.19 in the whole and individual areas of the rat brain. Endopeptidase 22.19 activity was analyzed by high-performance liquid chromatography (HPLC) using bradykinin as an operative substrate. Enzymatic specific activities were analyzed by rhythmometric methods and indicate a circadian fluctuation of endopeptidase 22.19 specific activity (mU of enzyme/mg of protein) in the whole brain [p < 0.001, mesor (M) = 7.62, amplitude (A) = 2.89, and acrophase (phi) = 23:08 h], striatum (p < 0.001, M = 2.92, A = 0.62, phi-23:03 h), hypothalamus (p < 0.001, M = 3.15, A = 0.86, phi-01:12 h), periaqueductal gray matter (p < 0.005, M = 2.62, A = 0.34, phi = 22:35 h), and cerebellum (p < 0.0 14, M = 4.27, A = 0.88, phi = 17:12 h). The circadian rhythmicity in endopeptidase 22.19 specific activity suggests that light may have an effect on the peptidase activity in whole brain and in areas of the central nervous system and may be essential for the mechanisms of circadian fluctuations of neuropeptides in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study reports, for the first time, that the recombinant hsp65 from Mycobacterium leprae (chaperonin 2) displays a proteolytic activity toward oligopeptides. The M. leprae hsp65 proteolytic activity revealed a trypsin-like specificity toward quenched fluorescence peptides derived from dynorphins. When other peptide substrates were used (β-endorphin, neurotensin, and angiotensin I), the predominant peptide bond cleavages also involved basic amino acids in P 1, although, to a minor extent, the hydrolysis involving hydrophobic and neutral amino acids (G and F) was also observed. The amino acid sequence alignment of the M. leprae hsp65 with Escherichia coli Hs1VU protease suggested two putative threonine catalytic groups, one in the N-domain (T 136, K 168, and Y 264) and the other in the C-domain (T 375, K 409, and S 502). Mutagenesis studies showed that the replacement of K 409 by A caused a complete loss of the proteolytic activity, whereas the mutation of K 168 to A resulted in a 25% loss. These results strongly suggest that the amino acid residues T 375, K 409, and S 502 at the C-domain form the catalytic group that carries out the main proteolytic activity of the M. leprae hsp65. The possible pathophysiological implications of the proteolytic activity of the M. leprae hsp65 are now under investigation in our laboratory.