176 resultados para Nerve Fibers
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
OBJETIVO: Avaliar a aplicabilidade do uso de músculo autógeno, tratado de diversas maneiras, em substituição aos enxertos de nervo. MÉTODOS: Os ratos foram separados em sete grupos que receberam, como tratamento a uma lesão nervosa padronizada, os seguintes tipos de enxertos: músculo fresco, músculo fixado com formol 10%, músculo congelado em freezer, músculo congelado em refrigerador, músculo denervado, nervo periférico e um grupo ficou sem qualquer tratamento. Foi avaliado o aspecto histológico das fibras nervosas no segmento reparado. RESULTADOS: A avaliação do segmento nervoso reparado mostrou que existiam axônios em quase todos os grupos, mas a metodologia empregada não possibilitou caracterizar adequadamente as diferenças entre os grupos. CONCLUSÃO: Este estudo mostrou a migração de axônios por meio de todos os enxertos utilizados.
Resumo:
Sodium, potassium adenosine triphosphatase (Na,K-ATPase) is a membrane-bound enzyme that maintains the Na+ and K+ gradients used in the nervous system for generation and transmission of bioelectricity. Recently, its activity has also been demonstrated during nerve regeneration. The present study was undertaken to investigate the ultrastructural localization and distribution of Na,K-ATPase in peripheral nerve fibers. Small blocks of the sciatic nerves of male Wistar rats weighing 250-300g were excised, divided into two groups, and incubated with and without substrate, the para-nitrophenyl phosphate (pNPP). The material was processed for transmission electron microscopy, and the ultra-thin sections were examined in a Philips CNI 100 (TM) electron microscope. The deposits of reaction product were localized mainly on the axolemma, on axoplasmic profiles, and irregularly dispersed on the myelin sheath, but not in the unmyelinated axons. In the axonal membrane, the precipitates were regularly distributed on the cytoplasmic side. These results together with published data warrant further studies for the diagnosis and treatment of neuropathies with compromised Na,K-ATPase activity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Nerve regeneration in a sensory nerve was obtained by the application of different techniques: inside-out vein graft (IOVG group) and standard vein graft (SVG group). These techniques provide a good microenvironment for axon regeneration in motor nerves, but their efficiency for regeneration of sensory nerves is controversial. The saphenous nerve was sectioned and repaired by the inside-out and standard vein graft techniques in rats. After 4, 12, and 20 weeks the graft and the distal stump were observed under electron microscopy. In each studied period, the pattern, diameters, and thickness of the myelin sheaths of the regenerated axons were measured in the graft and distal stump. A comparative study about the regenerated nerve fibers by these two different techniques was performed. Regenerated nerve fibers were prominent in both vein grafts 4 weeks after the surgical procedures. On the other hand, in the distal stump, regenerated nerve fibers were observed only from 12 weeks. In both inside-out vein graft and standard vein graft statistical difference was not observed about the diameters and thickness of the myelinated fibers after 20 weeks. On the other hand, the inside-out group had greater regenerated axon number when compared to the standard group. There is a capillary invasion in both graft and distal stump, especially in the IOVG group. The regenerated axons follow these capillaries all the time like satellite microfascicles. After 20 weeks, the diameters of regenerated fibers repaired by the standard vein graft technique were closer to the normal fibers compared to the inside-out vein graft. On the other hand, the pattern of these regenerated axons was better in the IOVG group.
Resumo:
The macro- and microstructures of the rabbit celiac-mesenteric ganglion complex are described in 20 young animals. We found ten celiac ganglia, twenty-seven cranial mesenteric ganglia and eleven celiac-mesenteric ganglia. The celiac ganglia had a rectangular shape in nine cases (90%) and a circular one in one case (10%). The cranial mesenteric ganglia presented triangular (66.7%), rectangular (11.1%), L-shape (18.5%) and semilunar (3.7%) arrangements. The celiac-mesenteric ganglia were organized in three patterns: a single left celiac-mesenteric ganglion having a caudal portion (72.7%); celiac-mesenteric ganglia without a caudal portion (18.2%) and a single celiac-mesenteric ganglion with two portions: left and right (9.1%).The microstructure was investigated in nine celiac-mesenteric ganglia. The results showed that the celiac-mesenteric ganglion is actually a ganglion complex constituted of an agglomerate of ganglionic units separated by nerve fibers, capillaries and septa of connective tissue. Using the semi-thin section method we described the cellular organization of the celiac-mesenteric ganglion complex. Inside of each ganglionic unit, there were various cell types: principal ganglion neurons (PGN), glial cells (satellite cells) and SIF cells (small intensely fluorescent cells or small granular cells), which are the cytologic basis for each ganglionic unit of the rabbit's celiac-mesenteric ganglion complex.
Resumo:
OBJETIVO: Comparar dois novos métodos com o método tradicional da neurorrafia término-lateral. MÉTODOS: Os ratos foram separados em quatro grupos. No grupo A-E o nervo peroneal foi seccionado e o coto distal foi suturado à lateral do nervo tibial com dois pontos de nylon 10-0. No grupo A-D duas abas de epi-perineuro abraçaram o nervo doador. No grupo B-D foi realizada sutura com um único ponto abraçando o nervo doador. O grupo B-E foi o controle. Após seis meses foram observados massa do músculo tibial cranial e morfometria do coto distal do nervo peroneal. RESULTADOS: Foi encontrada menor massa muscular nos grupos A-D, A-E e B-D quando comparados com o grupo B-E (p<0.0001) e mesma massa quando comparados entre si (p>0,05). Os grupos A-D, A-E e B-D apresentaram menor número de fibras nervosas quando comparados ao grupo B-E (p=0,0155; p=0,016; p=0,0021) e mesmo número quando comparados entre si. CONCLUSÃO: Os três tipos de neurorrafia não apresentaram diferenças relacionadas à massa muscular e número de fibras nervosas sugerindo que a sutura abraçante com apenas um ponto apresente grande potencial em áreas cirúrgicas mais profundas.
Resumo:
Introduction: Perineural invasion is a well-recognized form of cancer dissemination. However, it has been reported only in few papers concerning cutaneous carcinomas ( basal cell, BCC, and squamous cell, SCC). Moreover, the incidence is considered to be very low. Niazi and Lambert [Br J Plast Surg 1993; 46: 156-157] reported only 0.18% of perineural invasion among 3,355 BCCs. It is associated with high-risk subtypes, as morphea-like, as well as with an increased risk of local recurrence. No paper was found in the literature looking for perineural invasion in very aggressive skin cancers with skull base extension, with immunohistochemical analysis. Methods: This is a retrospective review, including 35 very advanced skin carcinomas with skull base invasion (24 BCCs and 11 SCCs, operated on at a single institution from 1982 to 2000). Representative slides were immunohistochemically evaluated with antiprotein S-100, in order to enhance nerve fibers and to detect perineural invasion. The results were compared to 34 controls with tumors with a good outcome, treated in the same time frame at the same Institution. Results: Twelve (50.0%) of the BCCs with skull base invasion had proven perineural invasion, as opposed to only 1 (4.6%) of the controls, and this difference was statistically significant (p < 0.001). Regarding SCCs, 7 aggressive tumors (63.6%) showed perineural invasion compared to only 1 (10.0%) of the controls, but this difference did not reach significance (p=0.08), due to the small number of cases. Conclusions: In this series, it was demonstrated that immunohistochemically detected perineural invasion was very prevalent in advanced skin carcinomas. In addition, it was statistically associated with extremely aggressive BCCs with skull base invasion. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
Previous studies that have used retrograde axonal tracers (horseradish peroxidase alone or conjugated with wheat germ agglutinin) have shown that the temporomandibular joint (TMJ) is supplied with nerve fibers originating mainly from the trigeminal ganglion, in addition to other sensory and sympathetic ganglia. The existence of nerve fibers in the TMJ originating from the trigeminal mesencephalic nucleus is unclear, and the possible innervation by parasympathetic nerve fibers has not been determined. In the present work, the retrograde axonal tracer, fast blue, was used to elucidate these questions and re-evaluated the literature data. The tracer was deposited in the supradiscal articular space of the rat TMJ, and an extensive morphometric analysis was performed of the labeled perikaryal profiles located in sensory and autonomic ganglia. This methodology permitted us to observe labeled small perikaryal profiles in the trigeminal ganglion, clustered mainly in the posterior-lateral region of the dorsal, medial and ventral thirds of horizontal sections, with some located in the anterior-lateral region of the ventral third. Sensory perikarya were also labeled in the dorsal root ganglia from C2 to C5. No labeled perikaryal profiles were found in the trigeminal mesencephalic nucleus. on the other hand, autonomic labeled perikaryal profiles were distributed in the sympathetic superior cervical and stellate ganglia, and parasympathetic otic ganglion. Our results confirmed those of previous studies and also demonstrated that: (i) there is a distribution pattern of labeled perikaryal profiles in the trigeminal ganglion; (ii) some perikaryal profiles located in the otic ganglion were labeled; and (iii) the trigeminal mesencephalic nucleus did not show any retrogradely labeled perikaryal profiles.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVOS: Comparar a neurorrafia término-lateral com epineuro versus sem epineuro. DESENHO: Foram operados 20 ratos. O nervo fibular foi seccionado e seu coto distal suturado na face lateral do nervo tibial. do lado direito nós removemos janela de epineuro e no lado esquerdo o epineuro foi deixado intacto. Depois de seis meses, os 14 animais sobreviventes foram submetidos a testes eletrofisiológicos, sacrificados e os nervos e músculos removidos para exames histológicos. O teste eletrofisiológico foi realizado mediante estímulo elétrico fornecido por um neuro-estimulador (LHM-110) com 2 milisegundos de duração, num modo repetido e 30 Hz. O estímulo foi aumentado progressivamente partindo de zero até atingir 1 volt. LOCAL: Faculdade de Medicina de Botucatu. RESULTADOS: No lado direito, os músculos que tiveram resposta positiva necessitaram uma média de 258,89 mv (±92,31) de estímulo elétrico para apresentar uma resposta e no lado esquerdo uma média de 298,34 mV (±139,32). O músculo tibial cranial apresentou peso médio para o lado direito de 0,47 g (±0,18) e para o lado esquerdo de 0,45 g (±0,15). O coto distal do nervo fibular apresentou uma média 310 fibras nervosas (±191,34) para o lado direito e 287,71 (±183,60) para o lado esquerdo. O nervo tibial acima da neurorrafia mostrou médias de 939,46 (±223,51) fibras nervosas para o lado direito e 959,46 (±327,48) para o lado esquerdo. O nervo tibial abaixo da neurorrafia mostrou médias de 935,17 (±298,65) fibras nervosas para o lado direito e 755,31 (±323,26) para o lado esquerdo. As fibras do músculo tibial cranial do lado direito apresentaram uma área média de 0,0162 (±0,008) m2 depois de 230 vezes de magnificação e 0,0152 (±0,0064) para as fibras do músculo tibial cranial do lado esquerdo. O aspecto histológico do músculo tibial cranial, tomando-se o normal como 100% foi de 78,21 (±20,75) para o lado direito e 82,14 (±15,89) para o lado esquerdo. A análise estatística (testetde Student) não mostrou diferenças (p>0,05) entre os lados esquerdo e direito para todas as variáveis. CONCLUSÕES: Ambas as neurorrafias (com e sem epineuro) não mostraram diferenças relacionadas aos aspectos morfológicos e eletrofisiológicos estudados.
Resumo:
The excretory duct in the silk gland of the sugarcane borer Diatraea saccharalis consists of two morphologically distinct regions, recognized by scanning and transmission electron microscopy. The thin posterior region, adjacent to the glandular region, presents a regular surface. Secretory vesicles containing either electron-dense or fibrillar cuticular-like materials are observed in their apical cytoplasm; the same cuticular materials were detected as extracellular deposits among the microvilli. The short anterior region, near the common duct, exhibits surface protrusions; there are no secretory vesicles in their apical cytoplasm. These results show that only the duct cells at the posterior region are involved in the secretion of the cuticular intima elements. Desmosome-like structures were visualized linking together adjacent microvillar membranes only in the cells of anterior duct region, with unknown function. The transition between the duct and the glandular region is abrupt; the cells of the glandular and posterior duct regions present large amounts of microtubules. Nerve fibers can be observed between the duct cells in their two regions, suggesting that control of silk secretion may occur in the excretory duct via neurotransmitter liberation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The Lyonet's gland is found in Lepidoptera larvae, close to the excretory duct of the silk gland. The role played by this gland is still uncertain. This work aims to describe the ultrastructure of the Lyonet's bland in Diatraea saccharalis larvae, offering suggestions regarding its possible function. The insects were reared under laboratory-controlled conditions. The glands were conventionally prepared for transmission (TEM) and scanning (SEM) electron microscopy. SEM showed that Lyonet's glands are paired small structures located in the ventral side of the head. They are composed by clustered long cells resembling leaves. Under TEM observations, each cell is surrounded by a thin basal lamina and contains large stellate nucleus. The cytoplasm presents large and empty canaliculi with small microvilli. The basal plasma membrane forms numerous infoldings where numerous and well-developed mitochondria are concentrated. The cytoplasmic membrane system is poorly developed. Our ultrastructural results suggest that the Lyonet's gland in D. saccharalis larvae may be involved in the uptake of small molecules from the hemolymph no morphological evidences of macromolecules synthesis and secretion were noticed. The detection of nerve fibers in the gland suggest a neural control for the glandular cell function.