168 resultados para Nd:YAG Laser
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study a pulsed Nd:YAG laser was used to join Monel 400 thin foil with 100 mu m thickness. Pulse energy was varied from 1.0 to 2.25J at small increments of 0.25J. The macro and microstructures were analyzed by optical microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the bottom foil dilution rate, it is possible to weld Monel 400 thin foil. The process appeared to be very sensitive to the gap between couples.
Resumo:
In this study a pulsed Nd:YAG laser was used to join Hastelloy C-276 thin foil with 100 microns thickness. Pulse energy was varied from 1.0 to 2.25 J at small increments of 0.25 J with a 4 ms pulse duration. The macro and microstructures of the welds were analyzed by optical and electronic microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the dilution rate, it is possible to weld Hastelloy C-276 thin foil by pulsed Nd: YAG laser. (C) 2012 Published by Elsevier B. V. Selection and/or review under responsibility of Bayerisches Laserzentrum GmbH
Resumo:
Hemangioma of urinary tract are unusual, being about 2 % of all hemangiomas. We present a case of a glans penis hemangioma. There is controversy concerning their treatment and outcome. Our patient was treated with a Neodymium : Yag laser irradiation, with complete morphological recuperation.
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.
Resumo:
Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS).Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM).Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM.Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.
Resumo:
Objective: the Nd:YAG laser irradiation of dental enamel was evaluated in enamel demineralization experiments in a Streptococcus mutans culture media. Summary Background Data: Previous studies had shown that a continuous wave Nd:YAG laser at an energy of approximately 67 mJ may induce an increased acid resistance in human dental enamel when exposed to severe demineralization conditions. Methods: Enamel windows of 3 x 4 cm in the buccal surface were irradiated with a continuous wave Nd:YAG laser at a wavelength of 1,064 Ecm using energy densities of from 83.75 to 187.50 J/cm(2), Enamel windows of 3 x 4 cm on the lingual surface served as control (without the laser irradiation). The enamel windows were then exposed to a Streptococcus mutans culture media at a temperature of 37 degrees C for 15 and 21 days. The laser effects and demineralization were examined both by optical microscopy and scanning electron microscopy (SEM), Results: A comparison between the lased and the unlased windows of enamel showed fusion and recrystalization of the enamel and increased acid-resistance in all groups irradiated with the Nd:YAG laser, on the other hand, the 3 x 4 delimited enamel surfaces from the control group (not irradiated with the Nd:YAG laser) showed 100% deminerization, Conclusions: These findings are consistent with the finding that laser irradiation of dental results in significant reduction of the effective solubility of enamel mineral.
Resumo:
Objective: the purpose of this study was to evaluate, by scanning electron microscopy (SEM), the effects of Nd:YAG laser irradiation applied perpendicular or parallel to the root canal dentin wall. Methods: Thirty human teeth were divided into two groups: Group A (20 roots), laser application with circular movements, parallel to the dentin root surface; and Group B (10 roots), roots cut longitudinally and laser applied perpendicular to the root surface. Group A was subdivided into A1 (10 roots), laser application with 100 mJ, 15 Hz and 1.5 W; and A2 (10 roots) with 160 mJ, 15 Hz, and 2.4 W. Group B was subdivided into B1 (10 hemisections) and B2 (10 hemi-sections) with parameters similar to A I and A2. Four applications of 7-sec duration were performed, with a total exposure of 28 sec. SEM evaluations were made in the cervical, middle, and apical thirds, with 500X and 2000X magnifications. Morphological changes scores were attributed, and the results were submitted to Kruskal Wallis statistical test (5%). Results: Significant statistical differences were found between groups A and B (p = 0.001). In groups A1 and A2, few areas of dentin melting were observed. In groups B1 and B2, areas of melting dentin covering dentin surface were observed. Conclusions: It was concluded that intracanal laser application with circular movements (parallel to the surface) produces limited morphological changes in root canal dentin wall.
Resumo:
When the carious tissue is eliminated either by conventional methods (with burs) or with lasers, the risk of accidentally damage the surface of adjacent teeth may occur, which hypothetically could lead to a more susceptible surface for canes formation. This in vitro study aims to evaluate the caries resistance of the dental enamel surface irradiated by the Nd:YAG laser applied in conditions simulating accidental exposition. Thirteen third molars were used in this study. The experimental groups were: G1: sound control and control + carious; G2: contact Nd:YAG laser at 0.75, 1, 2, or 3 W; 10 Hz; 3 sec (27, 35, 71, and 106 J/cm(2)); G3: same parameters from G2 + caries artificial induction through the demineralization and demineralization (DES/RE) dynamic model. The caries resistance analysis was evaluated by the superficial morphological aspect through SEM images and also by Ca/P proportion through energy dispersive X-ray spectroscopy (EDX). The micrograph images showed that the Nd:YAG laser changed the normalmorphology of the enamel prisms resulting in a melted and re-solidified surface intensified with the power increase. Significant statistical differences were observed applying the Kruskal-Wallis statistical test (p <= 0.01) among the Nd:YAG laser irradiated groups and the control with caries regarding the Ca/P proportion. As an exception, this was not observed when 3 W; 10 Hz; 3 sec; 106 J/cm(2) was applied and posteriously submitted to a cariogenic challenge. The results indicate that the Nd:YAG laser accidental irradiation at low power settings did not represent risks to the enamel caries resistance.