189 resultados para Native starch
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch.
Resumo:
Amidos nativos e modificados têm grande importância na indústria de alimentos, sendo empregados principalmente como espessantes e/ou estabilizantes. As limitações das pastas e géis obtidos a partir de amidos nativos tornaram necessário o desenvolvimento de muitos tipos de amidos modificados para aplicações alimentícias. Neste trabalho, algumas amostras de amidos modificados (n=20) disponíveis no Brasil foram recebidas de empresas produtoras e analisadas em relação a algumas características físico-químicas e propriedades tecnológicas. Um levantamento do uso de amidos modificados em alimentos também é apresentado, revelando crescente interesse pela indústria nesses ingredientes. Constatou-se que, enquanto alguns alimentos industrializados, como maioneses contêm em suas formulações amidos modificados, outros como condimento preparado de mostarda contêm apenas amido nativo. As análises físico-químicas permitiram concluir que alguns amidos modificados apresentavam teores elevados de acidez, relacionados à presença de reagentes utilizados em sua obtenção, não havendo presença de carboxilas nas suas macromoléculas. de maneira geral, os resultados de algumas propriedades tecnológicas avaliadas, tais como viscosidade aparente das pastas, resistência a congelamento/descongelamento e propriedade de expansão, estavam de acordo com a descrição dos produtos. As fontes mais observadas nas modificações foram, em ordem decrescente de importância, a mandioca, o milho ceroso e o milho regular.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1284-1293, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Starch is one of the most important sources of reserve of carbohydrate in plants and the main source in the human diet due to its abundance in the nature. There no other food ingredient that can be compared with starch in terms of sheer versatility of application in the food industry. Unprocessed native starches are structurally too weak and functionally too restricted for application in today’s advanced food and industrial technologies. The main objective of this study was to compare the thermal behavior of native cassava starch and those treated with hydrogen peroxide, as well as those treated with hydrogen peroxide and ferrous sulfate. The cassava starch was extracted from cassava roots (Manihot esculenta, Crantz) and treated by standardized hydrogen peroxide (H2 O2 ) solutions at 1, 2 and 3% (with or without FeSO4 ). Investigated by using they are thermoanalytical techniques: thermogravimetry - TG, differential thermal analysis – DTA and differential scanning calorimetry - DSC, as well as optical microscopy and X-ray powder diffractometry. The results showed the steps of thermal decomposition, changes in temperatures and in gelatinization enthalpy and small changes in crystallinity of the granules.
Resumo:
Porosity in starch consolidation casting technique is rightly related to original size and morphology of starch granules, leaving a pore structure after burning out. This work reports the results for the addition of different native potato and corn starch proportions in suspension,; with TiO(2) (rutile) powder. Gelling temperature have been defined after observation under light microscopy using a heating stage. Analysis of porous network and isolated pores have been clone from images of samples surfaces obtained by depth from focus reconstruction, revealing a qualitative correlation of pores characteristics and starches additions in suspensions, suggesting that the presence of isolated or interconnected pores can be handled by starches selection to control the amylopectin and amylose contents in slurries. Also, the analysis of porous fraction distribution shows no consistent pattern through specimens' volume according to starches in mixtures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)