23 resultados para Nanophase Materials

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to evaluate amino acid composition of silages produced from three raw materials. Commercial marine fish waste, commercial freshwater fish waste, and tilapia filleting residue were used to produce fish silage by acid digestion (20 ml/kg formic acid and 20 ml/kg sulfuric acid) and anaerobic fermentation (50 g/kg Lactobacillus plantarum, 150 g/kg sugar cane molasses). Protein content and amino acid composition were determined for raw materials and silage. Marine fish waste had higher crude protein content (776.7 g/kg) compared to freshwater fish waste (496.2 g/kg) and tilapia filleting residue (429.9 g/kg). All silages lacked up to three amino acids for each product according to FAO standards for essential amino acids. However, considering as the limiting factor only the amino acids below the 30% minimum requirement for fish in general, all products were satisfactory with respect to essential amino acids. Therefore, the results suggest that all products investigated are appropriate for use in balanced fish diets. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>The present work evaluates of harvested mushroom and viability of Agaricus bisporus growth in several casing materials based on spent mushroom substrate. The experiment consisted of eight casing layer, which six were made with spent mushroom substrate. The results confirm the usefulness of reincorporating the spent substrate in new cultivation cycles as an ingredient of casing mixtures. In general, biological efficiency was high, three of the SMS based-casings surpassing the threshold value of 100 kg 100 kg-1 of compost. The high electrical conductivity of mixtures containing a large proportion of spent substrate limits the extent to which it can be used, although mixing it with other materials (such as peat) reduces these values to acceptable levels. In short, it makes economic and environmental sense to reuse spent mushroom substrate as an ingredient of alternative casing materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated (40)Ar/(39)Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 +/- 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the (40)Ar/(39)Ar age of 15.21 +/- 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 +/- 0.06 to 5.72 +/- 0.12 Ma have been published previously. New (40)Ar/(39)Ar ages gave an average of 5.12 +/- 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new (40)Ar/(39)Ar ages than the previously published ages. Roccastrada glass (Italy) - a new (40)Ar/(39)Ar age, 2.45 +/- 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm(-2)). Defects that might produce spurious tracks are virtually absent. An independent (40)Ar/(39)Ar age of 8.77 +/- 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 degrees C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible, transparent, and insoluble urea-cross-linked polyether-siloxane hybrids presenting a tunable drug delivery pattern were prepared using the sol-gel method from PEO (poly(ethylene oxide)) and PPO (poly(propylene oxide)) functionalized at both chain ends with triethoxysilane. Different polyether chain lengths were used to control the urea/siloxane (named ureasil) node density, flexibility, and swellability of the hybrid network. We herein demonstrate that the drug release from swellable hydrophilic ureasil-PEO hybrids can be sustained for some days, whereas that from the unswellable ureasil-PPO hybrids can be sustained for some weeks. This outstanding feature conjugated with the biomedically safe formulation of the ureasil cross-linked polyether-siloxane hybrid widens their scope of application to include the domain of soft and implantable drug delivery devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automatic image processing and analysis technique has been developed for quantitative characterization of multi-phase materials. For the development of this technique is used the Khoros system that offers the basic morphological tools and a flexible, visual programming language. These techniques are implemented in a highly user oriented image processing environment that allows the user to adapt each step of the processing to his special requirements.To illustrate the implementation and performance of this technique, images of two different materials are processed for microstructure characterization. The result is presented through the determination of volume fraction of the different phases or precipitates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.