121 resultados para NEOPROTEROZOIC CRUSTAL ACCRETION

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Serido Group is a deformed and metamorphosed metasedimentary sequence that overlies early Paleoproterozoic to Archean basement of the Rio Grande do Norte domain in the Borborema Province of NE Brazil. The age of the Serido Group has been disputed over the past two decades, with preferred sedimentation ages being either Paleoproterozoic or Neoproterozoic. Most samples of the Serido Formation, the upper part of the Serido Group, have Sm-Nd T-DM ages between 1200 and 1600 Ma. Most samples of the Jucurutu Formation, the lower part of the Serido Group, have T-DM ages ranging from 1500 to 1600 Ma; some basal units have T-DM ages as old as 2600 Ma, reflecting proximal basement. Thus, based on Sm-Nd data, most, if not all, of the Serido Group was deposited after 1600 Ma and upper parts must be younger than 1200 Ma.Cathodoluminescence photos of detrital zircons show very small to no overgrowths produced during ca. 600 Ma Brasiliano deformation and metamorphism, so that SHRIMP and isotope dilution U-Pb ages must represent crystallization ages of the detrital zircons. Zircons from meta-arkose near the base of the Jucurutu Formation yield two groups of ages: ca. 2200 Ma and ca. 1800 Ma. In contrast, zircons from a metasedimentary gneiss higher in the Jucurutu Formation yield much younger ages, with clusters at ca. 1000 Ma and ca. 650 Ma. Zircons from metasedimentary and metatuffaceous units in the Serido Formation also yield ages primarily between 1000 and 650 Ma, with clusters at 950-1000, 800, 750, and 650 Ma. Thus, most, if not all, of the Serido Group must be younger than 650 Ma. Because these units were deformed and metamorphosed in the ca. 600 Ma Brasiliano fold belt during assembly of West Gondwana, deposition probably occurred ca. 610-650 Ma, soon after crystallization of the youngest population of zircons and before or during the onset of Brasiliano deformation.The Serido Group was deposited upon Paleoproterozoic basement in a basin receiving detritus from a variety of sources. The Jucurutu Formation includes some basal volcanic rocks and initially received detritus from proximal 2.2-2.0 Ga (Transamazonian) to late Paleoproterozoic (1.8-1.7 Ga) basement. Provenance for the upper Jucurutu Formation and all of the Serido Formation was dominated by more distal and younger sources ranging in age from 1000 to 650 Ma. We suggest that the Serido basin may have developed as the result of late Neoproterozoic extension of a pre-existing continental basement, with formation of small marine basins that were largely floored by cratonic basement (subjacent oceanic crust has not yet been found). Immature sediment was initially derived from surrounding land; as the basin evolved much of the detritus probably came from highlands to the south (present coordinates). Alternatively, if the Patos shear zone is a major terrane boundary, the basin may have formed as an early collisional foredeep associated with south-dipping subduction. In any case, within 30 million years the region was compressed, deformed, and metamorphosed during final assembly of West Gondwana and formation of the Brasiliano-Pan African fold belts. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U-Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana. Ages of detrital zircons (by ID-TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean- Paleoproterozoic ages (3.4-3.3, 3.1-2.7, and 2.5-2.4Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3-1.9Ga, with a peak at ca. 2.15Ga) and to the ca. 1.75Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2Ga, with a peak at 1.3Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin. Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6-1.2Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt. Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt. Whilst continent-continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634-599Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595-560Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588Ma, as indicated by monazite age. The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545-500Ma in the Paraguay belt and ca. 500Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50-100 million years. © 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mafic/ultramafic Ipanema Layered Complex (ILC), Minas Gerais Brazil, consists of seven individual bodies. These units crosscut polyphase orthogneisses and interlayered paragneisses of the Paleoproterozoic Juiz de Fora Complex. Intrusive granitoids tectonically related to [lie Neoproterozoie Aracuai orogen are also present in the study area.A Sm-Nd whole-rock linear array for seven samples metapyoxenites, metaperidotiles, metagabbro. and meta-anorthosite) from the Santa Cruz massif, the largest body of the ILC. suggest that it was emplaced at 1104 +/- 78 Ma the original magma was derived from a depleted mantle source (epsilon(Ndt)= +3.8). U-Pb single-grain zircon stud of a meta-anorthosite yields all upper intercept age of 1719 +/- 4 Ma, which is interpreted to represent inheritance. The lower intercept at 630+/-3 Ma indicates (hat a Neoproterozoic tectonothermal episode overprinted the ILC, this event occurred under upper-amphiolite-, to granulite-facies conditions. The 630 Ma episode is consistent with the timing of regional metamorphism and deformation of the adjacent Aracuai orogen (Brasiliano collage). Emplacement of the ILC and other coeval metamafies and meta-ultramafics (of alkaline affinity) in the re, oil is attributed to early extension tectonics, accompanying accretion of the Rodinia super- continent during the Mesoproterozoic-Neoproterozoic time boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Neoproterozoic granitogenesis related to the Central Mantiqueira Province comprise the calc alkaline to alkaline granitoid complexes of Sorocaba, San Francisco, São Roque, Ibiúna and Piedade. These complexes occur in a ruptil tectonic to tardi (Sn+3) event. The emplacement of the different facies in transtractives structures of the pull-apart type are characterized in the area by the main transcurrent shear zones of Taxaquara-Pirapora, Itu-Jundiuvira, Moreiras, Cangüera and Caucáia of ENE-WSW general direction. The massifs present complex internal architecture characterized by intrusions in restrict initial phase of intermediate equigranular nature. Also present a main phase of porfiroid monzo and sienogranite that fragments the previous phase, followed by lateral accretion of equi to inequigranular material, and in some cases by the accretion of late phases of circular bodies of porfiroid rapakivi granites, and a late to final phase of aplitic to pegmatitic composition. This magmatism grew with the intrusions of successive magmatic pulses, partially controlled by many reactivations of the shear zones. The REE also suggest that the magmatic phases are similar, synchronous and repetitive in four of the complexes in both domains, present in the São Francisco Complex. The crystallization starts from accretion processes, but compositionally quite different from the others. The variation in compositions and ages (TDM) for these granites reflect the derivation from different sources developed under different magmatic conditions, followed by processes of contamination that frequently occur in the crust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Archean (3.45-2.70Ga) rocks of the São José do Campestre Massif (SJCM) in the Borborema Province (NE Brazil) make up a small area (~6000km2) and are composed of granitoids and metasupracrustal rocks that define a complex magmatic and deformational history. The massif provides the opportunity to study mantle- and crustal-derived magmas generated since the Palaeoarchean. The orthogneisses of the SJCM are composed of: (1) tonalite to granodiorite with diorite enclaves (Bom Jesus gneiss, 3412±8Ma; TDM Nd model ages from 4.1 to 3.5Ga and negative epsilon Nd values); (2) biotite and ferroan-diopside monzogranite (Presidente Juscelino complex, 3356±21Ma and 3251±44Ma; TDM model ages range from 4.1 to 3.4Ga and epsilon Nd values that are slightly positive to negative); (3) hornblende tonalite to granodiorite (Brejinho complex, 3333±77Ma and 3187±8Ma; dominantly positive epsilon Nd values and TDM ages from 3.6 to 3.2Ga); (4) biotite monzogranite (São Pedro do Potengi gneiss, 3120±22Ma; TDM =3.5Ga; negative epsilon Nd value); (5) ferroan-diopside-grossular anorthosite and metagabbro (Senador Elói de Souza complex, 3033±3Ma); and (6) quartz diorite to syenogranite (São José do Campestre complex; 2685±9Ma and 2655±4Ma; negative epsilon Nd values and TDM ages from 3.9 to 3.3Ga). The orthogneisses are subalkaline to faintly alkaline, magnesian to ferroan, M- and I-type granitoids that follow either the K-enrichment or the trondhjemite trends. Each group has a subset with REE characteristics similar to Archean TTG and another that is analogous to Phanerozoic granitoids. They have negative Ta-Nb and Ti anomalies and have trace element contents of granitoids from subduction zones. Geochemical and Nd isotope data suggest that subducted oceanic crust and a depleted and metasomatised mantle wedge both acted as the magma sources. We propose a convergent tectonic model in which hybridisation of the upper mantle occurs through interactions with adakitic or trondhjemitic melts and recycling of earlier crust. The results imply that both the subducted oceanic crust and the mantle wedge played major roles in continent formation throughout successive episodes of arc accretion in Palaeo- and Mesoarchean times. The Archean rocks of the SJCM shares some similarities with the Pilbara, Kaapvaal, West African, and São Francisco cratons. However, the most reliable comparisons with the SJCM are with the neighbouring basement of the Nigeria and Cameroon shields. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upper portion of the Rio Guaratuba, located in the Serra do Mar coastal range of Southeastern Brazil, shows biological and geological evidences of being captured and diverted away from its original course in the direction of the Parana River Basin to become a coastal river due to the Quaternary activity of NW-trending faults. Despite draining directly to the Atlantic Ocean, the upper portion of the Guaratuba still maintains an ichthyofauna that is typical of the adjoining Parana River Basin rather than the characteristic fish fauna of the Brazilian coastal drainages. The fish fauna of the upper Guaratuba is an evident testimony of the tectonic process that allowed the faunal interchange between the upland basins and the coastal drainages that probably has been taking place in Southeastern Brazil throughout the long geological history of the passive Brazilian continental margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bacia de Santos é uma bacia de margem passiva gerada durante o Neocomiano, associado com o evento de ruptura do Supercontinente de Gondwana. A espessura da seção sedimentar pode alcançar 15 km, incluindo a seqüência rifte, e foi depositada sobre uma crosta afinada cuja espessura original era de cerca de 35 km. Foi realizada uma modelagem crustal em 8 linhas, aproximadamente perpendiculares ao mergulho deposicional da bacia, objetivando o reconhecimento da geometria da fase rifte e a estimativa do estiramento crustal. Foram utilizados durante a modelagem quatro horizontes sísmicos em profundidade, mapas magnético e gravimétrico além de dados da profundidade do embasamento magnético. Foi reconhecido um pronunciado estiramento crustal em toda a bacia (fatores de estiramento crustal variando entre 1.2 e 3.1), evidenciando ampla acomodação da deformação. Os resultados da modelagem necessitaram, ainda, de espessas e contínuas camadas de rochas vulcânicas para ajuste do modelo. Estas cunhas de rochas vulcânicas, limitadas lateralmente por falhas normais, são feições comuns em bacias rifte. Os resultados da modelagem foram confrontados com dados da profundidade do embasamento magnético, obtidos anteriormente, e evidenciaram forte correlação, sobretudo nas áreas rasas da bacia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the Sao Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics (ca 600 Ma).In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and Sao Rogue Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The Sao Rogue Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and Vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels. (C) 1999 Elsevier B.V. Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropy of magnetic susceptibility (AMS) and isotopic (U-Pb, Sm-Nd) data were combined to study the emplacement setting of the granite sheets that constitute the Esperanca pluton in the Borborema Province (Northeastern Brazil). The sheets dip moderately to the SE along the contact zone between the Paleoproterozoic basement rocks and Early Neoproterozoic orthogneisses and metasediments. Granite fabrics were determined mainly using AMS in 136 sites distributed within the central and western part of the pluton. The sheets normally have susceptibility lower than 0.35 mSI but, locally, where a Ti-poor magnetite appears with titanite, the susceptibility increases up to 5 mSI. Comparison between the silicate fabric and AMS showed inconsistencies between the shape of mineral and magnetic ellipsoids despite of their orientations that fit fairly well to each other. AMS indicated the deformation was partitioned between the lower (tonalite, syenogranite) and upper (leucogranite and coarse porphyritic granite) sheets. In the lower sheets the curvilinear lineation trajectory is attributed to a dominant heterogeneous pure shear event that flattened laterally the still molten tonalite and syenogranite into the regional foliation. ne associated microstructures are typically magmatic. Zircon U/Pb data of the syenogranite yielded a crystallization age of 592 +/- 5 Ma. In the upper sheets the fabric recorded a component of simple shear deformation that displaced the coarse porphyritic granite and the top gneissic host rocks to the southwest. Microstructures are mostly of post-full crystallization type. T(DM) model ages and epsilon(Nd) (t = 0) values indicate that the magma contaminated by partial melting of the regional host rocks. Sheet propagation at the emplacement level would have exploited the contact zone between crustal blocks of different rheologies when the melt pressures would be able to tensionally fail the anisotropy of the host rocks. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Medio Coreau domain of NE Brazil is located along the northwest margin of Borborema Province, the western branch of a Brasiliano/Pan-African collisional belt that formed during the assembly of Western Gondwana. The early Paleoproterozoic basement of the Medio Coreau domain is composed of migmatitic gneisses and juvenile granulites, overlain by late Paleoproterozoic and Neoproterozoic rocks intruded by syn- to post-tectonic Brasiliano granitoids. According to integrated structural and geochronological data (U-Pb zircon and monazite ages), the Neoproterozoic tectonic evolution of the Medio Coreau is characterized by low-angle thrusting and transcurrent deformation. U-Pb geochronological data from plutons intruded during this compressional regime indicate the collisional evolution began at approximately 622 Ma and continued until about 591 Ma. The continuation of convergence until approximately 560 Ma resulted in the formation of NE-SW and E-W shear zones within the Borborema Province and adjoining West African provinces. The final stage of the ductile tectonism was characterized by uplift and high-angle fault generation between approximately 560 and 545 Ma. The last tectonic event was an extensional phase, resulting in the formation of the Jaibaras graben and intrusion of post-orogenic granites at around 532 Ma. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bouguer gravity anomaly of the northwest Ceará state in north-central Brazil was separated into its regional and residual components which were interpreted separately. By assuming that the sources of the regional anomalies are the depth variations of the crust-mantle interface, the mapping of these variations permited identifying crustal thickening zones which may be related to regional structures. The gravity residual sources coincide with occurrences of high-grade rocks (granulites) associated to medium-grade gneisses. Besides, the major strike-slip zones present significant signatures in the gravity data. This geophysical interpretation is compatible with the interpretation that the tectonic framework of the area is related to two crustal blocks conjoined by an A-type suture. The blocks are displaced along an oblique ramp with dextral movement, which played an important role in uplifting high-grade rocks from the lower crust to upper crustal levels. The suture zone corresponds to an imbricated compressive system dipping to the east and complicated by late dextral strike-slip shear zones.