158 resultados para Myocardial Sympathetic Innervation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
High intensity systematic physical training leads to myocardial morphophysiological adaptations. The goal of this study was to investigate if differences in training were correlated with differences in cardiac sympathetic activity.58 males (19-47 years), were divided into three groups: strength group (SG), (20 bodybuilders), endurance group (EG), (20 endurance athletes), and a control group (CG) comprising 18 healthy non-athletes. Cardiac sympathetic innervation was assessed by planar myocardial I-123-metaiodobenzylguanidine scintigraphy using the early and late heart to mediastinal (H/M) ratio, and washout rate (WR).Left ventricular mass index was significantly higher both in SG (P < .001) and EG (P = .001) compared to CG without a statistical significant difference between SG and EG (P = .417). The relative wall thickness was significantly higher in SG compared to CG (P < .001). Both left ventricular ejection fraction and the peak filling rate showed no significant difference between the groups. Resting heart rate was significantly lower in EG compared to CG (P = .006) and SG (P = .002). The late H/M ratio in CG was significantly higher compared to the late H/M for SG (P = .003) and EG (P = .004). However, WR showed no difference between the groups. There was no significant correlation between the parameters of myocardial sympathetic innervation and parameters of left ventricular function.Strength training resulted in a significant increase in cardiac dimensions. Both strength and endurance training seem to cause a reduction in myocardial sympathetic drive. However, myocardial morphological and functional adaptations to training were not correlated with myocardial sympathetic activity.
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Sibutramine is a drug globally used for the treatment of obesity. The aim of this study was to investigate male reproductive disorders caused by sibutramine in adult rats. Wistar rats were treated for 28 consecutive days (gavage) with 10 mg/kg of sibutramine. Control animals received only vehicle (dimethylsulfoxide and saline). The rats were sacrificed for evaluation of body and reproductive organ weights, sperm parameters, hormone levels (luteinizing hormone, follicle-stimulating hormone, and testosterone), testicular and epididymal histopathology, sexual behavior, fertility and in vitro contractility of the epididymal duct. Sibutramine decreased (P < .05) weights of the epididymis and ventral prostate, but not of other reproductive organs. The sperm number and transit time in the epididymal cauda were decreased (P < .001), but the daily sperm production was not altered. Moreover, morphology and sperm motility, histopathology of the testes and epididymis, sexual behavior, fertility, and serum hormone levels were not altered by the treatment. Sibutramine increased the potency of norepinephrine and, per se, increased the mechanical activity of the epididymal duct in vitro. Thus, although sibutramine in these experimental conditions did not interfere with the reproductive process of rats, it provoked acceleration of the sperm transit time and a decrease in the sperm reserves in the epididymal cauda. This alteration is probably related to the sympathomimetic effect of this drug, as shown by the in vitro assays. In humans, use of this drug might present a threat for male fertility because sperm reserves in men are naturally lower than those in rats.
Resumo:
Guanethidine, a chemical that selectively blocks sympathetic noradrenergic neurons, was used to investigate the role of sympathetic innervation in the fertility of rat epididymal sperm, using both natural mating and in utero insemination protocols. This animal model correlates, at least in part, with spinal cord injury (SCI) in men. Adult male rats were treated daily by i.p. injections, for 21 or 42 days, with 0 or 6.25 mg/kg guanethidine. To compare the effects of guanethidine-induced sympathectomy with those following surgically induced sympathectomy, the inferior mesenteric ganglion and the proximal hypogastric nerves were removed in another group of rats. Both chemically and surgically induced sympathectomy increased the weight of the epididymis and seminal vesicles/coagulating glands as well as the number and the transit time of cauda epididymal sperm. Neither serum testosterone levels nor LH was affected by treatment with guanethidine. Using natural mating, no litters were produced by guanethidine-treated rats. Chemically denervated rats failed to produce copulatory plugs or ejaculate into the uterus. However, distal cauda epididymal sperm from chemically or surgically denervated rats displayed normal fertilization ability (80%) using in utero inseminations. In addition, the sperm of denervated rats did not show abnormal sperm chromatin structure using an assay that detects DNA damage. We conclude that sympathectomy delays the transit of sperm through the cauda epididymidis and produces ejaculatory dysfunction but does not compromise sperm quality in the distal cauda epididymidis. Moreover, these data provide compelling evidence that there is no association between the prolonged transit time of sperm within the epididymis, i.e., pre-ejaculatory sperm aging, and the fertility of those sperm, which has important implications for artificial insemination using sperm from men with SCI.
Resumo:
Guanethidine, a chemical that selectively abolishes peripheral noradrenergic nerves, was used to investigate the role of sympathetic innervation in the maintenance of epididymal sperm quantity and quality. Four groups of 10 adult male rats each were treated daily for 21 days, by i.p. injections, with either 0 (saline vehicle), 6.25, 12.5, or 25 mg/kg guanethidine. Norepinephrine content was reduced to undetectable levels in the cauda epididymidis in all guanethidine groups after 3 wk of treatment and was reduced to 7.4% of the control values after 1 wk of 6.25 mg/kg treatment. While body weight gain was significantly decreased at 12.5 and 25 mg/kg compared to that in controls, there was a significant increase in the weights of the seminal vesicles/coagulating glands in all treated groups. The number of homogenization-resistant spermatids per testis and the daily sperm production per testis remained unchanged. The weight of the epididymis was significantly increased at 6.25 and 12.5 mg/kg. Moreover, the number of cauda epididymal sperm and the transit time were increased significantly at 6.25 mg/kg (10.2 days) compared to values in the control cauda (6.3 days). Neither serum testosterone levels nor LH was affected in a dosage-related manner. There were no effects of guanethidine treatment on cauda epididymal sperm motility or morphology. A quantitative analysis of detergent-extracted cauda epididymal sperm proteins by SDS-PAGE revealed no differences, but there were diminutions in seven proteins in homogenates of caput/ corpus tissue. Histologic analysis of testis and epididymis sections revealed no differences between control and denervated animals. In a subsequent experiment the lowest effective dosage (6.25 mg/kg) was given to rats for 1 wk, and an increased number of cauda epididymal sperm and a delay in sperm transit were observed. Our results indicate that low-dosage guanethidine exposure denervates the epididymis within 1 wk, thereby delaying epididymal transit; however, neither 1- nor 3-wk exposure produces qualitative changes in the sperm.
Resumo:
Selective chemical sympathectomy of the internal genital organs of adult male rats was undertaken by chronic treatment with low doses of guanethidine. Biochemical and morphometric methods revealed that removal of sympathetic innervation prevents fructose secretion in the prostate and seminal vesicle, in addition to promoting reduced efficiency of delivery by the latter.
Resumo:
Selective chemical sympathectomy of the internal sex organs of prepubertal to mature male Wistar rats was performed by chronic treatment with low doses of guanethidine. Plasma testosterone and luteinizing hormone and the intratesticular level of testosterone were determined. The weight and fructose content of seminal vesicle and ventral prostate were also investigated. The results showed that sympathetic innervation is related to the control of the hypophyseal-testicular axis as well as to the growth and potential secretory activity of the male sex accessory glands.
Resumo:
Twenty-one-day old male Wistar rats were injected subcutaneously with guanethidine (GUA) at doses of 5 and 10 mg kg(-1) day(-1) for 20 days. Animals were sacrificed by decapitation during the prepubertal (41 days of age) and early-pubertal (51 days of age) periods of sexual development. The testes were collected, frozen in liquid N-2 and stored at -70 degrees C until determination of testicular progesterone (P): androstenedione (A) and testosterone (T). Higher levels of P (2.18 +/- 0.24 ng/g. control = 1.24 +/- 0.16 ng/g) associated with decreased levels of androgens (A = 0.26 +/- 0.06 ng/g and T = 2.05 +/- 0.19 ng/g; control = 1.86 +/- 0.76 ng/g and 8.48 +/- 1.16 ng/g, respectively) were observed in 10 mg GUA-treated rats of prepubertal age, while only P levels (3.12 +/- 0.51 ng/g control = 1.73 +/- 0.27 ng/g) were increased in rats of early pubertal age. It is important to note that in 41-day old male rats both 5 and 10 mg were effective in decreasing testicular concentration of testosterone. These results suggest that the sympathetic innervation of the testis is involved in the modulation of androgen biosynthesis, acting through a selective step in the steroid biochemical pathway during the pubertal process and that under the conditions employed the blockage in androgen biosynthesis in the prepubertal stage of sexual maturation is dependent on the dose of GUA.
Resumo:
The objective of this paper was to study the effect of sympathetic innervation on morphological and histochemical aspects of skeletal muscle tissue. Rabbit masseter muscle was studied using histochemical and immunohistochemical methods for periods of up to 18 months post-sympathectomy. The morphological and enzymatic characteristics of control masseter muscles were similar on both the left and right sides. The main features were muscle fibres with a mosaic pattern and a predominance of type IIa fibres, followed by type I. Type IIb fibres showed very low frequency. Sympathectomized animals showed varying degrees of metabolic and morphological alterations, especially 18 months after sympathectomy. The first five groups showed a higher frequency of type I fibres, whilst the oldest group showed a higher frequency of type lib fibres. In the oldest group, a significant variation in fibre diameter was observed. Many fibres showed small diameter, atrophy, hypertrophy, splitting, and necrosis. Areas with fibrosis were observed. Thus cervical sympathectomy induced morphological alterations in the masseter muscles. These alterations were, in part, similar to both denervation and myopathy. These findings indicate that sympathetic innervation contributes to the maintenance of the morphological and metabolic features of masseter muscle fibres.
Resumo:
In this paper, we present the rare case of a patient with cervical lymphadenopathy diagnosed as a T-cell-rich B-cell non-Hodgkin lymphoma that manifested Horner's syndrome due to a post-ganglionic sympathetic neuron lesion caused by the tumor. Copyright © 2012 S. Karger AG, Basel.
Resumo:
The objective of this paper was to study the effect of sympathetic innervation on morphological and histochemical aspects of skeletal muscle tissue. Rabbit masseter muscle was studied using histochemical and immunohistochemical methods for periods of up to 18 months post-sympathectomy. The morphological and enzymatic characteristics of control masseter muscles were similar on both the left and right sides. The main features were muscle fibres with a mosaic pattern and a predominance of type IIa fibres, followed by type I. Type IIb fibres showed very low frequency. Sympathectomized animals showed varying degrees of metabolic and morphological alterations, especially 18 months after sympathectomy. The first five groups showed a higher frequency of type I fibres, whilst the oldest group showed a higher frequency of type IIb fibres. In the oldest group, a significant variation in fibre diameter was observed. Many fibres showed small diameter, atrophy, hypertrophy, splitting, and necrosis. Areas with fibrosis were observed. Thus cervical sympathectomy induced morphological alterations in the masseter muscles. These alterations were, in part, similar to both denervation and myopathy. These findings indicate that sympathetic innervation contributes to the maintenance of the morphological and metabolic features of masseter muscle fibres.
Resumo:
Previous studies that have used retrograde axonal tracers (horseradish peroxidase alone or conjugated with wheat germ agglutinin) have shown that the temporomandibular joint (TMJ) is supplied with nerve fibers originating mainly from the trigeminal ganglion, in addition to other sensory and sympathetic ganglia. The existence of nerve fibers in the TMJ originating from the trigeminal mesencephalic nucleus is unclear, and the possible innervation by parasympathetic nerve fibers has not been determined. In the present work, the retrograde axonal tracer, fast blue, was used to elucidate these questions and re-evaluated the literature data. The tracer was deposited in the supradiscal articular space of the rat TMJ, and an extensive morphometric analysis was performed of the labeled perikaryal profiles located in sensory and autonomic ganglia. This methodology permitted us to observe labeled small perikaryal profiles in the trigeminal ganglion, clustered mainly in the posterior-lateral region of the dorsal, medial and ventral thirds of horizontal sections, with some located in the anterior-lateral region of the ventral third. Sensory perikarya were also labeled in the dorsal root ganglia from C2 to C5. No labeled perikaryal profiles were found in the trigeminal mesencephalic nucleus. on the other hand, autonomic labeled perikaryal profiles were distributed in the sympathetic superior cervical and stellate ganglia, and parasympathetic otic ganglion. Our results confirmed those of previous studies and also demonstrated that: (i) there is a distribution pattern of labeled perikaryal profiles in the trigeminal ganglion; (ii) some perikaryal profiles located in the otic ganglion were labeled; and (iii) the trigeminal mesencephalic nucleus did not show any retrogradely labeled perikaryal profiles.
Resumo:
In order to test if the maximal velocity of shortening (V(max)TP) reflects the level of inotropism and is affected by preload and afterload, the behavior of this index was compared in two groups of anesthetized, atropinized dogs when preload and afterload were raised with an angiotensin II infusion. In seven dogs (group I), the arterial pressure elevation was allowed to inhibit reflectively the sympathetic tone and depress contractility. In eleven dogs (group II), the adrenergic activity was abolished by previous administration of reserpine. In group I, there was a significant decrease in V(max)TP during the angiotensin infusion. In group II, there was no significant change in the value of this index when the drug was infused. In six animals of this group, a further increase of arterial pressure was induced, but the values of V(max)TP remained similar to control. These results suggest that this index reflects the inotropic state of the myocardium and does not suffer significantly from the influence of preload and afterload elevations within our experimental limits.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)