12 resultados para Multiple ovulations
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The effects of a low dose of equine purified FSH (eFSH) on incidence of multiple ovulations and embryo recovery rate in mares were studied. During the physiological breeding season in Brazil (19 degrees 45'45'S), 14 Mangalarga Marchador donor mares were used in a crossover study and another 25 mares of the same breed, between 3 years and 12 years of age were used as recipients for the embryo transfers. Donors were monitored during two consecutive oestrus cycles, an untreated control cycle followed by a treated cycle, when eFSH was administered. In both cycles, after an embryo collection attempt on day 8 post-ovulation all mares received 7.5 mg dinoprost and had their two largest follicles tracked daily by ultrasonography until the period of ovulation. Mares were inseminated every 48 h with extended fresh semen from a single stallion after the identification of a 35-mm follicle until the period of ovulation. Ovulations were induced by intravenous administration of 2.500 IU of human chorionic gonadotropin, upon detection of a 35- to 40-mm follicle. In the treated cycle, 5 mg eFSH was given intramuscularly once a day, from day 8 post previous ovulation until at least one follicle reached 35 mm in diameter. Embryo flushes were performed on day 8 of dioestrus (day 0 = ovulation). Treatment with eFSH resulted in higher (p < 0.05) ovulation rate and incidence of multiple ovulations compared to the control (1.6 vs 1.0 and 50% vs 0%, respectively - one mare had triple ovulation). However, embryo recovery rates in the control and treated cycles were similar (0.8 and 1.0, respectively; p > 0.05). Pregnancy rates in the recipient mares following embryo transfer were similar for the control and eFSH cycles (11/11 and 10/14, respectively). Additional studies are necessary in order to develop a low-dose protocol for the use of eFSH that brings a more consistent contribution to the efficiency of commercial equine embryo transfer programs.
Resumo:
This study was aimed to test low doses of a GnRH agonist, deslorelin acetate (DA), for induction of multiple ovulations in mares and to determine its impact upon their reproductive efficiency. Seven mares aging from 8-20 years were used in three consecutive reproductive cycles. Mares were initially monitored by ultrasound irrespectively of cycle stage, inseminated and submitted to embryo collection (EC) (T1). Immediately after, mares received 7.5 mg dinoprost tromothamine (DT) and were monitored by ultrasound twice a day until larger follicle reached 23-25mm and the second >18mm (T2). At this time point, mares received 100 mu g DA and ovulation was induced with 1000 mu g DA and 1000IU hCG when largest follicle reached 33-35mm in diameter, followed by EC. Mares were further allocated to T3 when received 7.5 mg DT after EC on 12 and 100 mu g DA 48 h later. DA treatment was performed until dominant follicle reached 34 +/- 1 mm or 6 days of application. All EC were performed 8 days after ovulation. Mares with multiple ovulations in T1, T2 and T3 were 14.28% (1/7), 100.00% (7/7) and 0.00% (0/7), respectively, and averaged 0.43 +/- 0.53 in T1, 0.86 +/- 0.38 in T2 and 0.00 in T3 embryos per donor, respectively. Embryo recovery rate was 43.00% in T1, 85.71% in T2 and 0.00% T3. In conclusion, use of DA in mares with follicles larger than 25mm enhanced dominant and co-dominant follicle growth, that ultimately increased the incidence of multiple ovulations and embryo recovery rate.
Resumo:
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size ( : 35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatoiy follicle (4.1 +/- 1.0 vs 14.9 +/- 10.8 days) and ovulated before untreated mares (6.6 +/- 1.2 vs 18.0 +/- 11.1 days; P <.05). All mares were treated with prostaglandin F-2 alpha (PGF(2 alpha)), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF(2 alpha), treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.
Resumo:
Embryo transfer is a biotechnology that has been used worldwide to increase the production of offspring from female bovines. Treatments to induce multiple ovulations (superovulation) have evolved from superstimulatory protocols that depended upon detection of oestrus to treatments that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-timed AI (FTAI). The protocols associated with FTAI facilitate animal handling and produce at least as many viably embryos as conventional treatment protocols that required detection of oestrus. Recent knowledge regarding LH receptors (LHR) and follicular development can be applied to improve embryo transfer protocols. In fact, improvements in the superstimulatory treatment called the 'P-36 protocol', which include hormones that stimulate LHR, indicate that adjustments related to LHR availability may increase bovine embryo yield compared with conventional protocols based on the detection of oestrus.
Resumo:
O presente estudo objetivou avaliar os efeitos da imunização ativa contra proteínas do líquido folicular suíno sobre a taxa de ovulação, duração do ciclo estral e concentração plasmática de progesterona em vacas e novilhas da raça Limousin. Realizaram-se duas imunizações com 15 dias de intervalo, aplicando-se um imunógeno composto do conteúdo protéico de 25ml de fluido folicular suíno adicionados de 1ml de gel de hidróxido de alumínio, via subcutânea. O número de ovulações foi mensurado por palpação retal e ultra-sonografia sete a nove dias após cada período de estro. Após a última imunização, os animais apresentaram maior incidência de ovulações duplas (41,7%). As médias de ovulações pré e pós-imunização foram 1,00+0,00 e 1,40+0,31 ovulações/ciclo, respectivamente (P<0,01;chi2). A imunização foi efetiva em aumentar o número de ovulações. Não foram observadas diferenças na duração do ciclo estral e na concentração de progesterona nos diferentes dias do ciclo. A manipulação das ações fisiológicas da inibina pode ser utilizada como alternativa para indução de ovulações múltiplas em bovinos.
Resumo:
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation. In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation. Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares. In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3). In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.
Resumo:
The primary objective of this study was to examine the follicular and ovulatory responses following treatment with pFSH in association with ablation-induced or spontaneous follicular wave emergence or follicle deviation during diestrus in crossbred (Mangalarga × Arabian) and Brazilian Warmblood mares with a propensity for spontaneous multiple ovulations; secondary considerations were given to the collection of embryos In Experiment 1, crossbred mares were administered (im) saline (control, n= 7) or pFSH (25 mg) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm (n= 7) or ≥20 mm (n= 7) or, after pre-treatment ovulation (Day 0) on Day 6 (n= 7) In Experiment 2, crossbred mares were administered (im) saline (control, n= 10) or a larger dose of pFSH (50 mg, n= 7) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm In Experiment 3, Brazilian Warmblood mares were administered (im) saline (control, n= 7), pFSH (25 mg, n= 7 or 50 mg, n= 5) or EPE (12.5 mg, n= 7) as a positive control on Day 6 Ultrasonic technology was used to ablate all follicles ≥8 mm and to monitor follicular development and detect ovulation Treatment with pFSH or EPE was done twice daily until the largest follicle reached ≥32 mm; thereafter, hCG (2500 IU) was administered (iv) when the largest follicle reached ≥35 mm Artificial insemination was done 12 h after hCG and embryo collections were done 8 d after post-treatment ovulations In Experiments 1 and 2, treatment of crossbred mares with pFSH post-ablation in association with the expected time of wave emergence or follicle deviation did not (P> 0.05) enhance the follicular or ovulatory responses or collection of embryos compared to controls In Experiment 3, although the enhanced ovulatory response of mares to EPE at the expected time of spontaneous wave emergence was not different (P> 0.05) from controls, it was greater (P< 0.05) than the response to pFSH In conclusion, the novelty of using follicle ablation prior to pFSH treatment at the time of wave emergence or follicle deviation did not enhance the follicular or ovulatory responses or collection of embryos to treatment in crossbred mares In addition, the hypothesis that Brazilian Warmblood mares with a greater propensity for spontaneous multiple ovulations are as responsive to pFSH compared to EPE was not supported Thus, the combined experimental results of the present study continue to support the general consensus that pFSH is relatively ineffective for follicular superstimulation/superovulation in mares © 2012 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Currently, timed ovulation induction and timed artificial insemination (TAI) can be performed in buffalo using GnRH or estradiol plus progesterone/progestin (P4)-releasing devices and prostaglandin F-2 alpha (PGF(2 alpha)). The control of the emergence of follicular waves and of ovulation at predetermined times, without the need for estrus detection, has facilitated the management and improved the efficiency of AI programs in buffalo during the breeding and nonbreeding season. Multiple ovulations, embryo transfer, ovum collection and in vitro embryo production have been shown to be feasible in buffalo, although low efficiency and limited commercial application of these techniques have been documented as well. These results could be associated with low ovarian follicular pools, high levels of follicular atresia and failures of the oocyte to enter the oviduct after superstimulation of follicular growth. This review discusses a number of key points related to the manipulation of ovarian follicular growth to improve pregnancy rates following TAI and embryo transfer of in vivo- and in vitro-derived embryos in buffalo.
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ