70 resultados para Multi objective evolutionary algorithms
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.
Resumo:
This paper proposes an alternative codification to solve the service restoration in electric power distribution networks using a SPEA2 multiobjective evolutionary algorithm, assuming the minimization of both the load not supplied and the number of switching operations involved in the restoration plan. Constrains as the line, power source and voltage drop limits in order to avoid the activation of protective devices are all included in the proposed algorithm. Experimental results have shown the convenience on considering these new representations in the sense of feasibility maintenance and also in the sense of better approximation to the Pareto set. ©2009 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Due to the renewed interest in distributed generation (DG), the number of DG units incorporated in distribution systems has been rapidly increasing in the past few years. This situation requires new analysis tools for understanding system performance, and taking advantage of the potential benefits of DG. This paper presents an evolutionary multi-objective programming approach to determine the optimal operation of DG in distribution systems. The objectives are the minimization of the system power losses and operation cost of the DG units. The proposed approach also considers the inherent stochasticity of DG technologies powered by renewable resources. Some tests were carried out on the IEEE 34 bus distribution test system showing the robustness and applicability of the proposed methodology. © 2011 IEEE.
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.
Resumo:
Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.
Resumo:
There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a new approach for solving constraint optimization problems (COP) based on the philosophy of lexicographical goal programming. A two-phase methodology for solving COP using a multi-objective strategy is used. In the first phase, the objective function is completely disregarded and the entire search effort is directed towards finding a single feasible solution. In the second phase, the problem is treated as a bi-objective optimization problem, turning the constraint optimization into a two-objective optimization. The two resulting objectives are the original objective function and the constraint violation degree. In the first phase a methodology based on progressive hardening of soft constraints is proposed in order to find feasible solutions. The performance of the proposed methodology was tested on 11 well-known benchmark functions.
Resumo:
This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS