40 resultados para Moxonidine
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We investigated the participation of central alpha(2)-adrenoceptors and imidazoline receptors in the inhibition of water deprivation-induced water intake in rats. The alpha(2)-adrenoceptor and imidazoline antagonist idazoxan (320 nmol), but not the alpha(2)-adrenoceptor antagonist yohimbine, abolished the antidipsogenic effect of moxonidine (alpha(2)-adrenoceptor and imidazoline agonist, 20 nmol) microinjected into the medial septal area. Yohimbine abolished the antidipsogenic effect of moxonidine intracerebroventricularly. Therefore, central moxonidine may inhibit water intake acting independently on both imidazoline receptors and alpha(2)-adrenoceptors at different forebrain sites.
Resumo:
1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).
Resumo:
We determined the effects of moxonidine and rilmenidine 20 mol (alpha(2)-adrenergic and imidazoline receptor agonists) injected into the medial septal area (MSA) on the pilocarpine-induced salivation, when injected intraperitoneally (i.p.), of male Holtzman rats weighing 250300 g, with stainless-steel cannula implanted into the MSA. The rats were anesthetized with zoletil 50 mg kg(-1) b.wt. (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle intramuscularly (IM), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The pre-treatment with moxonidine injected into the MSA reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (12 +/- 3 mg min(-1)) vs. control (99 +/- 9 mg min(-1)). The pre-treatment with rilmenidine 40 nmol also reduced the salivation induce by pilocarpine injected i.p. (20 +/- 5 mg min(-1)) vs. control (94 +/- 7 mg min(-1)). Idazoxan 40 nmol (imidazoline receptor antagonist) injected into the MSA previous to moxonidine and rilmenidine partially blocked the effect of moxonidine and totally blocked the rilmenidine effect in pilocarpine-induced salivation injected i.p. (60 +/- 8 and 95 +/- 10 mg min(-1), respectively). Yohimbine 40 nmol (alpha(2)-adrenergic receptor antagonist) injected into the MSA previously to moxonidine and rilmenidine partially blocked the moxonidine effect but produced no change on the rilmenidine effect on i.p. pilocarpine-induced salivation (70 +/- 6 and 24 +/- 6 mg min(-1), respectively). Injection of these alpha(2)-adrenergic and imidazoline agonists and antagonists agents i.p. produced no change on i.p. pilocarpine-induced salivation. These results show that central, but not peripheral, injection of alpha(2)-adrenergic and imidazoline agonists' agents inhibit pilocarpine-induced salivation. Idazoxan, an imidazoline receptor antagonist, totally inhibits the rilmenidine effect and partially inhibits the moxonidine effect on pilocarpine-induced salivation. Yohimbine produced no change on rilmenidine effect but partially inhibited the moxonidine effect. Both of these antagonists when injected into the MSA previous to pilocarpine i.p. potentiated the sialogogue effect of pilocarpine. The results suggest that alpha(2)-adrenergic/imidazoline receptor of the MSA when stimulated blocked pilocarpine-induced salivation in rats when injected intraperitonially These receptors of the medial septal area have an inhibitory mechanism on salivary secretion. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we investigated the effects of pretreatment with N-G-nitro-L-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) injected intravenously (IV) on the hypotension, bradycardia, and vasodilation produced by moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist) injected into the fourth brain ventricle (4th V) in rats submitted to acute hypertension that results from baroreflex blockade by bilateral injections of kynurenic acid (kyn, glutamatergic receptor antagonist) into the nucleus of the solitary tract (NTS) or in normotensive rats. Male Wistar rats (n = 5 to 7/group) anesthetized with IV urethane (1.0 g kg(-1) of body weight) and a-chloralose (60mg kg(-1) of body weight) were used. Bilateral injections of kyn (2.7 nmol 100 nL(-1)) into the NTS increased baseline mean arterial pressure (148 +/- 11 mm Hg, vs. control: 102 +/- 4mm Hg) and baseline heart rate (417 +/- 11 bpm, vs. control: 379 +/- 6 bpm). Moxonidine (20 nmol mu L-1) into the 4th V reduced mean arterial pressure and heart rate to similar levels in rats treated with kyn into the NTS (68 +/- 9 mm Hg and 359 +/- 7 bpm) or in control normotensive rats (66 +/- 7 mm Hg and 362 +/- 8 bpm, respectively). The pretreatment with L-NAME (2 5 mu mol kg-1, IV) attenuated the hypotension produced by moxonidine into the 4th V in rats treated with kyn (104 +/- 6 mm Hg) or in normotensive rats (95 +/- 8 mm Hg), without changing bradycardia. Moxonidine into the 4th V also reduced renal, mesenteric, and hindquarter vascular resistances in rats treated or not with kyn into the NTS and the pretreatment with L-NAME IV reduced these effects of moxonidine. Therefore, these data indicate that nitric oxide mechanisms are involved in hypotension and mesenteric, renal, and hindquarter vasodilation induced by central moxonidine in normotensive and in acute hypertensive rats.
Resumo:
Cholinergic, agonists activate salivation and the alpha (2)-adrenergic and imidazoline receptor agonists induce opposite effects. In the present study, we investigated the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of moxonidine (an a-adrenergic and imidazoline receptor agonist) on the salivation induced by the cholinergic agonist pilocarpine. Male Holtzman rats wish stainless steel cannula implanted into the lateral ventricle (LV) were used. In rats anesthetized with tribromoethanol (200 mg kg(-1)), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The treatment with moxonidine (5, 10 and 20 nmol in 1 mul) injected,i.c.v. reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (48 +/- 5, 17 +/- 2 and 15 +/- 2 mg min(-1) vs. control, 73 +/- 7 mg min(-1)). The same doses of moxonidine injected i.c.v. also reduced the salivary secretion induced by pilocarpine (500 nmol in 1 mul). injected i.c.v. (44 +/- 1, 14 +/- 2 and 20 +/- 3 mg min(-1) vs. control, 51 +/- 2 mg min(-1)). Injection of moxonidine (20 nmol in 0.1 ml) i.p. produced no chance on i.p. pilocarpine-induced salivation (58 +/- 4 mg min(-1) vs. control, 50 +/- 4 mg min(-1)). The results show that central, but not peripheral, injection of moxonidine inhibit,. pilocarpine-induced salivation, suggesting that central mechanisms activated by alpha (2)-adrenergic/imidazoline agonists inhibit cholinergic-induced salivation in rats. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Central injections of the alpha(2) adrenergic/imidazoline receptor agonist moxonidine inhibit water and NaCl intake in rats. In the present study, we investigated the possible involvement of central alpha(2) adrenergic receptors on the inhibitory effect of moxonidine in 0.3 M NaCl intake induced by 24 h sodium depletion. Male Holtzman rats with stainless-steel cannulas implanted into the lateral ventricle (LV) were used. Sodium depletion was produced by the treatment with the diuretic furosemide (20 mg/kg of body weight) injected subcutaneously + 24 h of sodium-deficient diet. Intracerebroventricular (icv) injections of moxonidine (20 nmol/l mul) reduced sodium depletion-induced 0.3 M NaCl intake (6.6 +/- 1.9 ml/120 min vs. vehicle: 12.7 +/- 1.7 ml/120 min). Pre-treatment with the alpha(2) adrenoreceptor antagonists RX 821002 (80 nmol/l mul), SK&F 86466 (640 nmol/l mul) and yohimbine (320 nmol/3 mul) injected icv abolished the inhibitory effect of icv moxonidine on sodium depletion-induced 0.3 M NaCl intake (13.3 +/- 1.4, 15.7 +/- 1.7 and 11.8 +/- 2.2 ml/120 min, respectively). The results show that the activation of alpha(2) adrenoreceptors is essential for the inhibitory effect of central moxonidine on sodium depletion-induced NaCl intake. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In the present study we compared the effects produced by moxonidine (alpha(2)-adrenoceptor/imidazoline agonist) injected into the 4th cerebral ventricle and into the lateral cerebral ventricle on mean arterial pressure, heart rate and on renal, mesenteric and hindquarter vascular resistances, as well as the possible action of moxonidine on central alpha(1)- or alpha(2)-adrenoceptors to produce cardiovascular responses. Male Holtzman rats (n = 7-8) anesthetized with urethane (0.5 g/kg, intravenously - i.v.) and alpha-chloralose (60 mg/kg, i.v.) were used. Moxonidine (5, 10 and 20 nmol) injected into the 4th ventricle reduced arterial pressure (-19 +/- 5, -30 +/- 7 and -43 +/- 8 mmHg vs. vehicle: 2 +/- 4 mmHg), heart rate (-10 +/- 6, - 16 +/- 7 and -27 +/- 9 beats per minute - bpm, vs. vehicle: 4 +/- 5 bpm), and renal, mesenteric and hindquarter vascular resistances. Moxonidine (5, 10 and 20 nmol) into the lateral ventricle only reduced renal vascular resistance (-77 +/- 17%, - 85 +/- 13%, -89 +/- 10% vs. vehicle: 3 +/- 4%), without changes on arterial pressure, heart rate and mesenteric and hindquarter vascular resistances. Pre-treatment with the selective alpha(2)-adrenoceptor antagonist yohimbine (80, 160 and 320 nmol) injected into the 4th ventricle attenuated the hypotension (-32 +/- 5, -25 +/- 4 and -12 +/- 6 mmHg), bradycardia (-26 +/- 11, -23 +/- 5 and -11 +/- 6 bpm) and the reduction in renal, mesenteric and hindquarter vascular resistances produced by moxonidine (20 nmol) into the 4th ventricle. Pretreatment with yohimbine (320 nmol) into the lateral ventricle did not change the renal vasodilation produced by moxonidine (20 nmol) into the lateral ventricle. The alpha(1)-adrenoceptor antagonist prazosin (320 nmol) injected into the 4th ventricle did not affect the cardiovascular effects of moxonidine. However, prazosin (80, 160 and 320 nmol) into the lateral ventricle abolished the renal vasodilation (-17 +/- 4, -6 +/- 9 and 2 +/- 11%) produced by moxonidine. The results indicate that the decrease in renal vascular resistance due to moxonidine action in the forebrain is mediated by alpha(1)-adrenoceptors, while the cardiovascular effects produced by moxonidine acting in the brainstern depend at least partially on the activation of coadrenoceptors. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Peripheral treatment with the cholinergic agonist pilocarpine induces intense salivation that is inhibited by central injections of the alpha(2)-adrenergic/imidazoline receptor agonist moxonidine. Salivary gland blood flow controlled by sympathetic and parasympathetic systems may affect salivation. We investigated the changes in mean arterial pressure (MAP) and in the vascular resistance in the submandibular/sublingual gland (SSG) artery, superior mesenteric (SM) artery and low abdominal aorta (hindlimb) in rats treated with intraperitoneal (i.p.) pilocarpine alone or combined with intracerebroventricular (i.c.v.) moxonidine. Male Holtzman rats with stainless steel cannula. implanted into lateral ventricle (LV) and anesthetized with urethane were used. Pilocarpine (4 mumol/kg of body weight) i.p. reduced SSG vascular resistance (-50 +/- 13% vs. vehicle: 5 +/- 3%). Pilocarpine i.p. also increased mesenteric vascular resistance (15 +/- 5% vs. vehicle: 2 +/- 3%) and MAP (16 +/- 3 mmHg, vs. vehicle: 2 +/- 3 mmHg). Moxonidine (20 nmol) i.c.v. increased SSG vascular resistance (88 +/- 12% vs. vehicle: 7 +/- 4%). When injected 15 min following i.c.v. moxonidine, pilocarpine i.p. produced no change on SSG vascular resistance. Pilocarpine-induced pressor responses and increase in mesenteric vascular resistance were not modified by i.c.v. moxonidine. The treatments produced no change in heart rate (HR) and hindlimb vascular resistance. The results show that (1) i.p. pilocarpine increases mesenteric vascular resistance and MAP and reduces salivary gland vascular resistance and (2) central moxonidine increases salivary gland vascular resistance and impairs pilocarpine-induced salivary gland vasodilatation. Therefore, the increase in salivary gland vascular resistance may play a role in the anti-salivatory response to central moxonidine. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)