2 resultados para Moor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved on-site characterization of humic-rich hydrocolloids and their metal species in aquatic environments was the goal of the present approach. Both ligand exchange with extreme chelators ( diethylenetetraaminepentaacetic acid ( DTPA), ethylendiaminetetraacetic acid ( EDTA)) and metal exchange with strongly competitive cations (Cu(II)) were used on-site to characterize the conditional stability and availability of colloidal metal species in a humic-rich German bogwater lake ( Venner Moor, Munsterland). A mobile time-controlled tangential-flow ultrafiltration technique (cut-off: 1 kDa) was applied to differentiate operationally between colloidal metal species and free metal ions, respectively. DOC ( dissolved organic carbon) and metal determinations were carried out off-site using a home-built carbon analyzer and conventional ICP-OES ( inductively-coupled plasma-optical emission spectrometry), respectively. From the metal exchange equilibria obtained on-site the kinetic and thermodynamic stability of the original metal species ( Fe, Mn, Zn) could be characterized. Conditional exchange constants K ex obtained from aquatic metal species and competitive Cu(II) ions follow the order Mn > Zn >> Fe. Obviously, Mn and Zn bound to humic-rich hydrocolloids are very strongly competed by Cu( II) ions, in contrast to Fe which is scarcely exchangeable. The exchange of aquatic metal species (e.g. Fe) by DTPA/EDTA exhibited relatively slow kinetics but rather high metal availabilities, in contrast to their Cu(II) exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding and availability of metals (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Zn) in therapeutically applied peat (GroBes Gifhorner Moor, Sassenburg/North Germany) was characterized by means of a versatile extraction approach. Aqueous extracts of peat were obtained by a standardized batch equilibrium procedure using high-purity water (pH 4.5 and 5.0), 0.01 mol l(-1) calcium chloride solution, 0.0 1 mol l(-1) ethylenediaminetetraacetic acid (EDTA) and 0.01 mol l(-1) diethylenetriarnine pentaacetic acid (DTPA) solution as metal extractants. In addition, the availability of peat-bound metal species was kinetically studied by collecting aliquots of extracts after different periods of extraction time (5, 10, 15, 30, 60 and 120 min). Metal determinations were performed by atomic spectrometry methods (AAS, ICP-OES) and dissolved organic matter (DOM) was characterized by UV/Vis measurements at 254 and 436 nm, respectively. of the extractants studied Ca, Mg and Mn were the most available metals, in contrast to peat-bound Fe and Al. The relative standard deviation s(r) of the developed extraction procedures was mostly in the range of 4 to 20%, depending on the metal and its concentration in peat. A pH increase favored the extraction of metals and DOM from peat revealing complex extraction kinetics. Moreover, a competitive exchange between peat-bound metal species and added Cu(II) ions showed that > 100 mg of Cu(II) per 50 g wet peat was necessary to exchange the maximum of bound metals (e.g. 21.8% of Al, 3.9% of Fe, 79.0% of Mn, 81.9% of Sr, related to their total content). (C) 2002 Elsevier B.V. B.V. All rights reserved.