55 resultados para Monolithic Coupler
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 mu m i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximate to 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950degreesC for 120 h with a heating rate of 0.1degreesC/min. We studied the luminescence properties of the I-4(13/2)-->I-4(15/2) emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By simple room temperature broad band time-resolved spectroscopy it was possible to discriminate different Eu3+ spectra in SnO2 monolithic gels obtained by a sol-gel synthetic route. Nanocrystalline domains of the cassiterite-like SnO2:Eu could be easily identified in the transparent medium. From X-ray diffraction profiles a mean particle radius of 2.2 nm was estimated. © 1992.
Resumo:
Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (∼34 Å) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300°C. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We introduce the notion of a PT-symmetric dimer with a chi((2)) nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss, respectively. An interesting feature of the problem is that because of the two harmonics, there exist in general two distinct gain and loss parameters, different values of which are considered herein. We find a number of traits that appear to be absent in the more standard cubic case. For instance, bifurcations of nonlinear modes from the linear solutions occur in two different ways depending on whether the first-or the second-harmonic amplitude is vanishing in the underlying linear eigenvector. Moreover, a host of interesting bifurcation phenomena appear to occur, including saddle-center and pitchfork bifurcations which our parametric variations elucidate. The existence and stability analysis of the stationary solutions is corroborated by numerical time-evolution simulations exploring the evolution of the different configurations, when unstable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work was to investigate the effect of previous treatments at high pressures on the crystallization kinetics of monolithic samples of a Li2O-2SiO(2) (LS2) glass. The glass transition temperature (T-g) and the temperature of the onset of crystallization (T-p) obtained by differential thermal analyses (DTA) were measured for LS2 glass samples submitted to isostatic pressures ranging from 2.5 to 7.7 GPa during 5 min at room temperature. The observed systematic changes in T-g and T-p were probably related to the cracks induced by high pressure inside the monolithic samples and in its surface. Away from the cracks, the nucleation density slightly decreased as a function of pressure but along the cracks, the nucleation density was significantly higher. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Glassy carbon can be manufactured practically without pores, named Monolithic Vitreous Carbon (MVC) or presenting up to 98% in transport pore volume, foam form, denominated Reticulated Vitreous Carbon (RVC). The glassy carbon processing is affected by some processing parameters, among them it can be cited the resin viscosity. The present work involves the optimization of RVC manufacture by monitoring the polyurethane (PU) foam impregnation with furfuryl alcohol resin with different viscosity values, which were obtained by dilution of the resin with different amounts of furfuryl alcohol. The resin samples used in the PU impregnation were characterized by thermal and rheological analyses. These results were correlated with scanning electron microscopy observations and compression test results of the impregnated polyurethane foam. The results show that the rheological behavior of the resin has significant influence on the polymerization step, affecting the homogeneity of impregnated foam and, consequently, its final properties, mainly the mechanical one. The impregnated foam prepared with the furfuryl alcohol resin diluted with 10% of furfuryl alcohol (eta = 11.4 Pa s) showed higher compression values (0.26 MPa). (c) 2007 Wiley Periodicals, Inc.
Resumo:
A nonisothermal study of the kinetics of the nanoporosity elimination in monolithic silica xerogels, prepared from acid and ultrasound catalyzed hydrolysis of tetraethylortosilicate (TEOS), has been carried out by means of in situ linear shrinkage measurements performed with different heating rates. The study could be applied up to almost alpha similar to 0.6 of the volume fraction alpha of eliminated pores. The activation energy was found increasing from about 3.2 x 10(2) kJ/mol for alpha similar to 0.06 up to about 4.4 x 10(2) kJ/mol for alpha. similar to 0.44. The sintering process accompanying the nanopore elimination in this set of xerogels is in agreement with a viscous flux sintering process with the hydroxyl content diminishing with the volume fraction of eliminated pores. All the volume fraction of eliminated pores versus temperature (T) curves can be matched onto a unique curve with an appropriate rescaling of the T axis, independent of the heating rate. This scaling property suggests that the path of sintering seems the same, regardless of the heating rate; the difference is that the rate is faster at higher temperature.
Resumo:
In this work the technique of X-ray reflectometry was applied to study zirconiumsulfate films deposited by sol-gel dip-coating process on a borosilicate glass surface. The influence of withdrawal speed and temperature of thermal treatment on the film structure are analyzed. The thermal evolution of the density and thickness of the film was compared with these properties measured for a monolithic xerogel by helium picnometry and thermomechanical analysis. The fitting of experimental curves by classical reflectivity model showed the presence of an additional layer at the top surface of the coating. Layer thickness increases with increase of withdrawal speed in agreement with the Landau-Levich model. The apparent and real densities are similar for coatings fired below 400 degrees C, which shows that the films are free of pores. The shrinkage during firing is anisotropic, occurring essentially perpendicular to the coating surface. (C) 1999 Elsevier B.V. B.V. All rights reserved.