12 resultados para Monitoring. beach profiles. Ponta Negra. Sedimentology. Hydrodynamics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coastal cities attract a large number of tourists for their beautiful landscape and recreational activities, increasing the municipalities' income source. Thus, a need is clear for the establishment of beach quality monitoring programs to ensure bathers health. Although there is an effective monitoring program for recreational waters in Brazil there are no programs to certify the quality of beach sands. In this sense, the aim of this work was to analyze the density of bacteria from the genus Enterococcus in both sand and water from two beaches from São Vicente, São Paulo (Brazil) and correlate these densities to abiotic parameters such as: temperature, salinity, particle size, organic matter and tides). Water and sand samples were collected during February 2006 on the beaches of Gonzaguinha e Ilha Porchat and bacterial densities were determined by membrane filter technique. Temperature and salinity were measured in situ with a thermometer and a refractometer while particle size and organic matter were determined according to methods described by Suguio and Dean. There were significant differences between densities found in water and sand (p=0.004), being approximately 20 times higher in Gonzaguinha's beach sands. Similar results were found for Ilha Porchat beach samples, being the densities found in sand 3 times greater than those found in water. Both beaches showed a negative correlation between bacterial densities and salinity and temperature, suggesting a deleterious effect of these parameters on the bacterial community. On the other hand, no correlation was found between organic matter and particle size and bacterial densities. This work demonstrates that there is a great necessity for monitoring beach sand since the evaluation of beach quality is an important part of integrated coastal management programs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Driven by the challenges involved in the development of new advanced materials with unusual drug delivery profiles capable of improving the therapeutic and toxicological properties of existing cancer chemotherapy, the one-pot sol-gel synthesis of flexible, transparent and insoluble urea-cross-linked polyether-siloxane hybrids has been recently developed. In this one-pot synthesis, the strong interaction between the antitumor cisplatin (CisPt) molecules and the ureasil-poly(propylene oxide) (PPO) hybrid matrix gives rise to the incorporation and release of an unknown CisPt-derived species, hindering the quantitative determination of the drug release pattern from the conventional UV-Vis absorption technique. In this article, we report the use of an original synchrotron radiation calibration method based on the combination of XAS and UV-Vis for the quantitative determination of the amount of Pt-based molecules released in water. Thanks to the combination of UV-Vis, XAS and Raman techniques, we demonstrated that both the CisPt molecules and the CisPt-derived species are loaded into an ureasil-PPO/ureasil-poly(ethylene oxide) (PEO) hybrid blend matrix. The experimentally determined molar extinction coefficient of the CisPt-derived species loaded into ureasil-PPO hybrid matrix enabled the simultaneous time-resolved monitoring of each Pt species released from this hybrid blend matrix.
Resumo:
A Sigatoka-negra (Mycosphaerella fijiensis) ameaça os bananais comerciais em todas as áreas produtoras do mundo e provoca danos quantitativos e qualitativos na produção, acarretando sérios prejuízos financeiros. Faz-se necessário o estudo da vulnerabilidade das plantas em diversos estádios de desenvolvimento e das condições climáticas favoráveis à ocorrência da doença. Objetivou-se com este trabalho desenvolver um modelo probabilístico baseado em funções polinomiais que represente o risco de ocorrência da Sigatokanegra em função da vulnerabilidade decorrente de fatores intrínsecos à planta e ao ambiente. Realizou-se um estudo de caso, em bananal comercial localizado em Jacupiranga, Vale do Ribeira, SP, considerando o monitoramento semanal do estado da evolução da doença, séries temporais de dados meteorológicos e dados de sensoriamento remoto. Foram gerados mapas georreferenciados do risco da Sigatoka-negra em diferentes épocas do ano. Um modelo para estimar a evolução da doença a partir de imagens de satélite foi obtido com coeficiente de determinação R² igual a 0,9. A metodologia foi desenvolvida para a detecção de épocas e locais que reúnem condições favoráveis à ocorrência da Sigatoka-negra e pode ser aplicada, com os devidos ajustes, em diferentes localidades, para avaliar o risco da ocorrência da doença em polos produtores de banana.
Resumo:
Este trabalho teve o objetivo de caracterizar o diâmetro e a uniformidade das gotas e o perfil de distribuição volumétrica da ponta denominada antideriva de grande ângulo (ADGA) 110015, nas pressões de 207 e 310 kPa, para determinar o seu espaçamento na barra de pulverização. Os perfis de distribuição volumétrica para a altura de 50 cm foram avaliados em mesa de deposição. A partir dos perfis de distribuição, simulou-se o padrão de deposição ao longo da barra de pulverização. O espectro do diâmetro de gotas foi determinado em analisador de tamanho de partículas por difração laser. Pode-se concluir que a ponta ADGA 110015 apresentou perfil de distribuição do jato simétrico nas pressões de trabalho de 207 e 310 kPa. Na maior pressão, pode-se operar com menor altura da barra ou com as pontas mais espaçadas entre si, pois o maior ângulo de aspersão do jato resultou em diminuição do coeficiente de variação. Entretanto, o aumento da pressão proporcionou redução significativa no diâmetro das gotas, aumentando o potencial de cobertura do alvo, a suscetibilidade à deriva e à evaporação.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Environmental monitoring of aquatic systems is an important tool to support policy makers and environmental managers' decisions. Long-term, continuous collection of environmental data is fundamental to the understanding of an aquatic system. This paper aims to present the integrated system for environmental monitoring (SIMA), a long-term temporal series system with a web-based archive for limnological and meteorological data. The following environmental parameters are measured by SIMA: chlorophyll-a (µgL-1), water surface temperature (ºC), water column temperature by a thermistor string (ºC), turbidity (NTU), pH, dissolved oxygen concentration (mg L-1), electric conductivity (µS cm-1), wind speed (ms-1) and direction (º), relative humidity (%), shortwave radiation (Wm-2) and barometric pressure (hPa). The data were collected in a preprogrammed time interval (1 hour) and were transmitted by satellite in quasi-real time for any user within 2500 km of the acquisition point. So far, 11 hydroelectric reservoirs are being monitored with the SIMA buoy. Basic statistics (mean and standard deviation) and an example of the temporal series of some parameters were displayed at a database with web access. However, sensor and satellite problems occurred due to the high data acquisition frequency. Sensors problems occurred due to the environmental characteristics of each aquatic system. Water quality sensors rapidly degrade in acidic waters, rendering the collected data invalid. Data is also rendered invalid when sensors become infested with periphyton. Problems occur with the satellites' reception of system data when satellites pass over the buoy antenna. However, the data transfer at some inland locations was not completed due to the satellite constellation position. Nevertheless, the integrated system of water quality and meteorological parameters is an important tool in understanding the aquatic system dynamic. It can also be used to create hydrodynamics models of the aquatic system to allow for the study of meteorological implications to the water body.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial resistance is a rising problem all over the world. Many studies have showed that beach sands can contain higher concentration of microorganisms and represent a risk to public health. This paper aims to evaluate the densities and resistance to antimicrobials of Escherichia coli strains, isolated from seawater and samples. The hypothesis is that microorganisms show higher densities in contaminated beach sands and more antimicrobial resistance than the water column. Density, distribution, and antimicrobial resistance of bacteria E. coli were evaluate in seawater and sands from two recreational beaches with different levels of pollution. At the beach with higher degree of pollution (Gonzaguinha), water samples presented the highest densities of E. coli; however, higher frequency of resistant strains was observe in wet sand (71.9 %). Resistance to a larger number of antimicrobial groups was observe in water (betalactamics, aminoglycosides, macrolides, rifampicins, and tetracyclines) and sand (betagalactamics and aminoglycosids). In water samples, highest frequencies of resistance were obtain against ampicilin (22.5 %), streptomycin (15.0 %), and rifampicin (15.0 %), while in sand, the highest frequencies were observe in relation to ampicilin (36.25 %) and streptomycin (23.52 %). At the less polluted beach, Ilha Porchat, highest densities of E. coli and higher frequency of resistance were obtain in wet and dry sand (53.7 and 53.8 %, respectively) compared to water (50 %). Antimicrobial resistance in strains isolated from water and sand only occurred against betalactamics (ampicilin and amoxicilin plus clavulanic acid). The frequency and variability of bacterial resistance to antimicrobials in marine recreational waters and sands were related to the degree of fecal contamination in this environment. These results show that water and sands from beaches with a high index of fecal contamination of human origin may be potential sources of contamination by pathogens and contribute to the dissemination of bacterial resistance.