6 resultados para Mondragon
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Several left-right parity violating asymmetries in lepton-lepton scattering in fixed target and collider experiments are considered as signals for doubly charged vector bosons (bileptons).
Resumo:
In this short lecture, I discuss some basic phenomenological aspects of CP and T violation in neutrino oscillation. Using CP/T trajectory diagrams in the bi-probability space, I try to sketch out some essential features of the interplay between the effect of CP/T violating phase and that of the matter in neutrino oscillation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg -> H -> W+W- in p (p) over bar collisions at the Fermilab Tevatron Collider at root s = 1.96 TeV. With 4.8 fb(-1) of integrated luminosity analyzed at CDF and 5.4 fb(-1) at D0, the 95% confidence level upper limit on sigma(gg -> H) x B(H -> W+W-) is 1.75 pb at m(H) = 120 GeV, 0.38 pb at m(H) = 165 GeV, and 0.83 pb at m(H) = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.
Resumo:
We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of 2.7-5.4fb -1 of pp̄ collisions collected during Run II of the Fermilab Tevatron collider. Combining measurements that simultaneously determine the fractions of W bosons with longitudinal (f 0) and right-handed (f +) helicities, we find f 0=0.722±0.081[±0.062(stat)±0.052(syst)] and f +=-0.033±0.046[±0.034(stat)±0.031(syst)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f 0=0.682±0. 057[±0.035(stat)±0.046(syst)] for fixed f + and f +=-0.015±0.035[±0.018(stat)±0.030(syst)] for fixed f 0. The results are consistent with standard model expectations. © 2012 American Physical Society.
Resumo:
The top quark is the heaviest known elementary particle, with a mass about 40 times larger than the mass of its isospin partner, the bottom quark. It decays almost 100% of the time to a W boson and a bottom quark. Using top-antitop pairs at the Tevatron proton-antiproton collider, the CDF and D0 Collaborations have measured the top quark's mass in different final states for integrated luminosities of up to 5.8fb -1. This paper reports on a combination of these measurements that results in a more precise value of the mass than any individual decay channel can provide. It describes the treatment of the systematic uncertainties and their correlations. The mass value determined is 173.18±0.56(stat)±0.75(syst)GeV or 173.18±0.94GeV, which has a precision of ±0.54%, making this the most precise determination of the top-quark mass. © 2012 American Physical Society.