70 resultados para Model selection
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Resumo:
We consider model selection uncertainty in linear regression. We study theoretically and by simulation the approach of Buckland and co-workers, who proposed estimating a parameter common to all models under study by taking a weighted average over the models, using weights obtained from information criteria or the bootstrap. This approach is compared with the usual approach in which the 'best' model is used, and with Bayesian model averaging. The weighted predictor behaves similarly to model averaging, with generally more realistic mean-squared errors than the usual model-selection-based estimator.
Resumo:
In this paper, we propose a bivariate distribution for the bivariate survival times based on Farlie-Gumbel-Morgenstern copula to model the dependence on a bivariate survival data. The proposed model allows for the presence of censored data and covariates. For inferential purpose a Bayesian approach via Markov Chain Monte Carlo (MCMC) is considered. Further, some discussions on the model selection criteria are given. In order to examine outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated via a simulation study and a real dataset.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.
Resumo:
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (< 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. © 2013 Blackwell Publishing Ltd/CNRS.
Resumo:
We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields. © FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)