2 resultados para Mn5

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn(2-x)V(1+x)O4 (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn(2-x)V(1+x)O4 (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution K beta X-ray fluorescence spectra. The ionic models found are Mn22+V4+O4, Mn5/32+V4/33.5+O4 and Mn2+V23+O4. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn2+. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V3+ ion instead of the weak Mn2+ (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques. (c) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ba2SiO4: MnO43- luminescence is reported and compared to similar host lattices based on PO43-, VO43- and AsO43-, where Mn5+ substitutes for p(5+),V5+ Or AS(5+). The observed energy position of MnO43- 1E state in SiO44- is in accordance with interelectronic repulsion caused by Mn5+-O bond length. At 77 K the E-1 splitting is 119 cm(-1), which is in agreement with 1.8 degrees, the average deviation of O-M-O angles from the regular tetrahedron. These values are adjusted to Ca point symmetry. The vibronic-structure spectra evidenced a progression with a frequency assigned to the nu(2)(E) bending mode of MnO43-.