218 resultados para Mixture toxicity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The nihB gene of Aspergillus nidulans was found to confer sensitivity to elevated concentrations of nitrite, compact morphology and absence of conidiation. The nihB locus was allocated to linkage group II and was recessive in heterozygous diploids. When the nihB1 mutant was grown on a mixture of nitrite plus NH4 + its sensitivity to nitrite was unchanged. A possible role for this gene in nitrite transport and/or the maintenance of membrane integrity is discussed. © 1992 Rapid Communications of Oxford Ltd.
Resumo:
Extracts of the ripe seeds of the sesame plant (Sesamum indicum, Linnaeus) were tested through contact experiments to investigate their toxicity to Atta sexdens rubropilosa workers. Dichloromethane extract of seeds was toxic to the ants and the factor responsible for this effect was distributed through the ethyl acetate fraction. This fraction was divided into four sub fractions composed of: A) triglycerides, B) monoglycerides + diglycerides + triglycerides, C) diglycerides + sesamoline + sesamine and D) sesamine. However, when these sub fractions were separated, no toxicity was observed. Therefore, in order to determine why the activity was lost, the concentration of each sub fraction was duplicated, and the possible combinations among them were also tested. We concluded that the toxicity to the ants is due mainly to a mixture of triglycerides, and sesamoline or the combination of sesamoline + sesamine can be a synergistic factor in this fraction.
Resumo:
Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F 1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10 -4M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F 1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. © 2011 Elsevier Ltd.
Resumo:
Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. © 2012 Elsevier B.V..
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the Threshold Effect Level values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Guanabara Bay (GB) comprises of estuarine and marine environments of high ecological and socio-economic relevance, together with port, industrial and urban areas. The anthropogenic activities produce environmental impacts, including the aquatic pollution. The sediment quality assessment is important to evaluate the effects of contamination, once sediments are a repository for most of the contaminants. In this Study, the quality of sediments from GB was evaluated, in rainy and dry periods, throughout the employment of acute toxicity tests with the amphipod Tiburonella viscana, and chronic bioassays with embryos of the sea-urchin Lytechinus variegatus. In the dry period, acute toxicity was found in the sediments from stations 1, 2 3 (NW) and 7 (near Guapimirim Environmental Protection Area). The bioassays with liquid phases showed effects, but were strongly influenced by the unionized ammonia levels, which were high in this period. In the rainy period, acute toxicity was found in sediments samples from stations 1, 2, 3, 6, 8, 10, 11, 12 and 15. Chronic toxicity could be clearly detected, as ammonia concentrations tended to be low in the most part of the samples. The results showed that the sediment toxicity is influenced by precipitation rates, which increase the input of contaminants to the Bay, and also allowed subdividing GB in three main zones: northwest (stations 1, 2, 3, 5), northeast (stations 6, 7, 8, 9) and centre-south (stations 10, 11, 12, 13, 14, 15). Results also showed that the quality of GB sediments is poor, and that toxicity tests could determine the combined effects of pollutants.
Resumo:
A Baía de Guanabara é um ambiente marinho-estuarino de grande relevância ecológica e sócio-econômica, e sujeita a uma ampla gama de impactos ambientais. O sedimento é o principal destino para a maioria das substâncias introduzidas nos corpos d'água, podendo fornecer uma medida integrada da qualidade ambiental, a qual pode ser avaliada por várias abordagens. Neste projeto, a qualidade de sedimentos da Baía de Guanabara foi por uma abordagem ecotoxicológica, por meio de testes de toxicidade aguda de sedimento integral, utilizando Tiburonella viscana, e testes de toxicidade crônica de água intersticial, elutriato e interface sedimento-água, utilizando embriões de Lytechinus variegatus. Os sedimentos foram coletados em 14 estações de amostragem. Nos testes crônicos houve efeitos significativos na maioria das amostras, enquanto os sedimentos coletados nas estações 1, 2, 3, 6, 8, 10, 11, 12 e 15 apresentaram também toxicidade aguda. Houve grande concordância entre os resultados dos diferentes testes, e sua integração mostrou que os sedimentos analisados encontram-se inadequados à vida aquática, indicando degradação ambiental na baía da Guanabara. Nesse contexto, o controle das fontes poluidoras e o gerenciamento dos múltiplos usos da baía devem ser implementados, no sentido da melhora da qualidade ambiental.
ACUTE TOXICITY of SODIUM SELENITE and SODIUM SELENATE TO TILAPIA, Oreochromis niloticus, FINGERLINGS
Resumo:
Selenium is an essential nutrient for many organisms, including fish. It can be released in the water by natural processes of dissolving rocks and minerals, and by the wastewater from industries and agricultural activities, which can increase its concentration in the environment, leading to toxic effects to the aquatic biota. Median Lethal Concentrations (LC(50-96h)) of two forms of selenium were estimated to fingerlings of Nile tilapia Oreochromis niloticus, focusing on estimating indicators for future environmental risk assessments in aquatic ecosystems contaminated with those elements, particularly for evaluate sources of water quality suitable for rearing tilapia. The results were: LC(50-96h) of sodium selenite (Na(2)SeO(3)) = 4.42 mg Se(4+) L(-1), and LC(50-96h) of sodium selenate (Na(2)SeO(4)) = 14,67 mg Se(6+) L(-1). According to those data, it was possible to classify sodium selenite as highly toxic and sodium selenate as moderately toxic to fingerlings of tilapia.