164 resultados para Microorganisms adhesion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
The pathogenic fungus, Histoplasma capsulatum, causes the respiratory and systemic disease 'histoplasmosis'. This disease is primarily acquired via inhalation of aerosolized microconidia or hyphal fragments of H. capsulatum. Evolution of this respiratory disease depends on the ability of H. capsulatum yeasts to survive and replicate within alveolar macrophages. It is known that adhesion to host cells is the first step in colonization and biofilm formation. Some microorganisms become attached to biological and non-biological surfaces due to the formation of biofilms. Based on the importance of biofilms and their persistence on host tissues and cell surfaces, the present study was designed to investigate biofilm formation by H. capsulatum yeasts, as well as their ability to adhere to pneumocyte cells. H. capsulatum biofilm assays were performed in vitro using two different clinical strains of the fungus and biofilms were characterized using scanning electron microscopy. The biofilms were measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay. The results showed that both the H. capsulatum strains tested were very efficient at adhering to host cells and forming biofilm. Therefore, this is a possible survival strategy adopted by this fungus.
Resumo:
Research has clarified the properties required for polymers that resist bacterial colonisation for use in medical devices. The increase in antibiotic-resistant microorganisms has prompted interest in the use of silver as an antimicrobial agent. Silver-based polymers can protect the inner and outer surfaces of devices against the attachment of microorganisms. Thus, this review focuses on the mechanisms of various silver forms as antimicrobial agents against different microorganisms and biofilms as well as the dissociation of silver ions and the resulting reduction in antimicrobial efficacy for medical devices. This work suggests that the characteristics of released silver ions depend on the nature of the silver antimicrobial used and the polymer matrix. In addition, the elementary silver, silver zeolite and silver nanoparticles, used in polymers or as coatings could be used as antimicrobial biomaterials for a variety of promising applications. (C) 2009 Elsevier B. V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AIM: To evaluate the adherence of Streptococcus mutans to the surface of the amalgam and copper/aluminum alloy samples and also evaluate the release of metallic ions. METHODS: The prepared medium was changed every 72 h and analyzed by atomic absorption spectrophotometer. Samples were removed from the prepared medium at 15, 30, 48 and 60 days. RESULTS: The result shows that ions released were statistically different among all groups, and so were both biofilm and pits formation and the corrosion induced by the S. mutans in both types of samples. SEM observation of the samples immersed in the prepared medium with S. mutans showed adherence of microorganisms on the whole surface, in all groups. CONCLUSIONS: The S. mutans adhere to both amalgam and copper/aluminum alloy causing corrosion of those restorations. S. mutans produced a greater ions release in Cu/Al alloy; in amalgam, the ions release was not influenced by exposure to S. mutans.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.
Surface-expressed enolase contributes to the adhesion of Paracoccidioides brasiliensis to host cells
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Paracoccidioidomycosis is caused by Paracoccidioides brasiliensis, which although not formally considered an intracellular pathogen, can be internalized by epithelial cells in vitro and in vivo. The mechanisms used by P. brasiliensis to adhere to and invade non-professional phagocytes have not been identified. The signal-transduction networks, involving protein tyrosine kinase (PTK) and protein phosphatase activities, can modulate crucial events during fungal infections. In this study, the involvement of PTK has been investigated in P. brasiliensis adherence and invasion in mammalian epithelial cells. A significant inhibition of the fungal invasion occurred after the pre-treatment of the epithelial cells with genistein, a specific tyrosine kinase inhibitor, indicating that the tyrosine kinase pathway is involved in P. brasiliensis internalization. In contrast, when the fungus was treated, a slight (not significant) inhibition of PTK was observed, suggesting that PTK might not be the fungus' transduction signal pathway during the invasion process of epithelial cells. An intense PTK immunofluorescence labeling was observed in the periphery of the P. brasiliensis infected cells, little PTK labeling was found in both uninfected cells and yeast cells, at later infection times (8 and 24 h). Moreover, when the epithelial cells were treated with genistein and infected with P. brasiliensis, no labeling was observed, suggesting the importance of the PTK in the infectious process. These results suggest that PTK pathway participates in the transduction signal during the initial events of the adhesion and invasion processes of P. brasiliensis to mammalian epithelial cells.