166 resultados para Micronucleus tests
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Evaluation of extracts from Coccoloba mollis using the Salmonella/microsome system and in vivo tests
Resumo:
The common everyday use of medicinal plants is an ancient, and still very widespread practice, whereby the need for studies on their possible toxicity and mutagenic properties. The species Coccoloba mollis has been much used in phytotherapy, mainly in cases involving loss of memory and stress. In order to investigate its genotoxic and mutagenic potential, ethanolic extracts from the leaves and roots underwent Salmonella/microsome assaying (TA98 and TA100 strains, with and without exogenous metabolism - S9), besides comet and micronucleus tests in vivo.There was no significant increase in the number of revertants/plate of Salmonella strains in any of the analyzed root-extract concentrations, although the extract itself was extremely toxic to the Salmonella TA98 strain in the tests carried out with S9 (doses varying from 0.005 to 0.5 µg/plate). on the other hand, the leaf-extract induced mutations in the TA98 strain in the absence of S9 in the highest concentration evaluated, although at very low mutagenic potency (0.004 rev/µg). Furthermore, there was no statistically significant increase in the number of comets and micronuclei, in treatments involving Swiss mice. It was obvious that extracts of Coccoloba mollis, under the described experimental conditions, are not mutagenic.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sun mushroom is the popular name for the Agaricus blazei Murill fungus, a mushroom native to south-eastern Brazil, which has been frequently used in popular medicine mainly in the form of tea to treat various ailments (stress, diabetes, etc.). In the present study, the genotoxic and/or anti-genotoxic effects ofA. blazei on mammalian cells in culture was assessed by checking the increase or reduction of micronucleus (MN) frequency and comets. The sun mushroom (lineage 99/26) was used as aqueous extracts prepared (2.5%) at three different temperatures (60, 25 and 4°C). The in vitro micronucleus (MN) test in binucleated cells and comet assay were used in V79 cells cultivated in HAM-F10+DMEM medium (1:1), supplemented with 10% of fetal bovine serum. The experiments were divided into four treatment types: 1. Negative control; 2. Positive control with MMS; 3. Treatments with the three forms of extracts (60, 25 and 4°C); and 4. Treatments with the extracts in different associations (simultaneous, pre-treatment, post-treatment and simultaneous after pre-incubation for 1 h) with MMS. None of the A. blazei extracts show genotoxic activity. In the comet assay no protecting effect was found. The results obtained in the MN test showed that the three forms of extracts used had protective activity, suggesting that the compound or active ingredients of A. blazei are always present in these extracts. The greater protective efficiency of the simultaneous treatment and simultaneous treatment with pre-incubation mixture with MMS suggests that the extracts have an antimutagenic action of the desmutagenic type. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Most manufactured foods contain chemicals added as a deliberate part of the manufacturing process. The aims of the present study were to evaluate the mutagenicity and antimutagenicity of annatto, a natural pigment extracted from the Bixa orellana L. and widely used as a colorant in foods. The micronucleus test was performed in bone marrow cells from Swiss male mice treated with one of the three concentrations of annatto (1330, 5330 and 10,670 ppm), incorporated into the diet. The animals were fed with the diets for 7 days and sacrificed 24 h after the last treatment. For the evaluation of the antimutagenic potential of annatto, at day 7, the animals received an intraperitoneal injection of cyclophosphamide (50 mg/kg body weight). Under the concentrations tested annatto did not present mutagenic or antimutagenic activities on the mice bone marrow cells. However, an increased frequency of micronucleated cells was observed when the highest concentration (10,670 ppm) was administered simultaneously with cyclophosphamide. In conclusion, the data indicate that annatto colour, for the conditions used, is neither mutagenic nor an inhibitor of induced mutations, although it should be used carefully since high doses may increase the effect of a mutagen. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Strychnos pseudoquina St. Hil. is a native plant of the Brazilian Savannah, used in popular medicine to treat a number of conditions. Since it contains large quantities of alkaloids with proven antiulcer activity, we tested the genotoxic potential of crude extracts and fractions containing alkaloids and flavonoids from the leaves of this plant, on Salmonella typhimurium and performed the micronucleus test on peripheral blood cells of mice treated in vivo. The results showed that the methanol extract of the leaves of S. pseudoquina is mutagenic to the TA98 (-S9) and TA100 (+S9, -S9) strains of Salmonella. The dichloromethane extract was not mutagenic to any of the tested strains. Fractions enriched with alkaloids or flavonoids were not mutagenic. In vivo tests were done on the crude methanol extract in albino Swiss mice, which were treated, by gavage, with three different doses of the extract. The highest dose tested (1800 mg/kg b.w.) induced micronuclei after acute treatment, confirming the mutagenic potential of the methanol extract of the leaves of S. pseudoquina. In high doses, constituents of S. pseudoquina compounds act on DNA, causing breaks and giving rise to micronuclei in the blood cells of treated animals. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Numerous potentially mutagenic chemicals have been studied mainly because they can cause damaging and inheritable changes in the genetic material. Several tests are commonly used for biomonitoring pollution levels and to evaluate the effects of toxic and mutagenic agents present in the natural environment. This study aimed at assessing the potential of a textile effluent contaminated with azo dyes to induce chromosomal and nuclear aberrations in Allium cepa test systems. A continuous exposure of seeds in samples of the textile effluent in different concentrations was carried out (0.3%, 3%, 10%, and 100%). Cells in interphase and undergoing division were examined to assess the presence of chromosome aberrations, nuclear changes, and micronuclei. Our results revealed a mutagenic effect of the effluent at concentrations of 10% and 100%. At lower concentrations, the effluent (3% and 0.3%) did not induce mutagenic alterations in the test organism A. cepa. These findings are of concern, since cell damage may be transmitted to subsequent generations, possibly affecting the organism as a whole, as well as the local biota exposed to the effluent discharge. If the damage results in cell death, the development of the organism may be affected, which could also lead to its death. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Isatin (1H-indole-2,3-dione) is a chemical found in various medicinal plant species and responsible for a broad spectrum of pharmacological and biological properties that may be beneficial to human health, as an anticonvulsant, antibacterial, antifungal, antiviral, and anticancer agent. The aim of the present study was to determine in vitro the cytotoxic, mutagenic, and apoptotic effects of isatin on CHO-K1 and HeLa cells using the MTT viability assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide), micronucleus (MN) test, apoptosis index, and nuclear division index (NDI). The 5 isatin concentrations evaluated in the mutagenicity and apoptosis tests were 0.5, 1, 5, 10, and 50 μM, selected through a preliminary MTT assay. Positive (doxorubicin, DXR) and negative (phosphate buffered saline, PBS) control groups were also included in the analysis. Isatin did not exert a mutagenic effect on CHO-K1 after 3 and 24 h of treatment or on HeLa cells after 24 h. However, 10 and 50 μM concentrations inhibited cell proliferation and promoted apoptosis in both CHO-K1 and HeLa cells. Data indicate that the cytotoxic, apoptotic, and antiproliferative effects of isatin were concentration independent and cell line independent. The authors thank Profa Dra Eiko Nakagawa Itano for the use the spectrophotometer and the Conselho Nacional para o Desenvolvimento Científico e Tecnológico for master's scholarships to P. M. Cândido-Bacani and grants to T. R. Calvo, W. Vilegas, E. A. Varanda and I. M. S. Cólus. The Conselho Nacional para o Desenvolvimento Científico e Tecnológico provided funding for this study. © 2013 Taylor & Francis Group, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraiba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of Sao Jose dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and on 2004 November and 2005 January (rain season), in three distinct sites, comprising 12 samples. It was possible to detect substances of clastogenic and/or aneugenic potential, as well as cytotoxic substances, chiefly at the point corresponding to the drainage of oil shale plant wastes along the river. The highest incidence of micronuclei and nuclear alterations was detected during May and August, whereas the results obtained in November and January were insignificant. This work shows that the effluent treatment provided by the oil shale plant was not fully efficient to minimize the effect of cytotoxic and mutagenic substances in the test organism surveyed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study, micronucleus and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality of the Atibaia river, in an area that receives effluents discharge of a petroleum refinery and also to evaluate the effectiveness of the treatments used by the refinery. Water samples were collected in five different sites related with a refinery from São Paulo State, Brazil. For the micronucleus and nuclear alterations tests, O. niloticus specimens were exposed for 72 h to the water samples and in pure ground water (negative control). The results herein obtained indicated that the treatments used by the refinery diminished the cytogenetic damage; however they were not fully effective, since the final mill has induced damages in the genetic material of the test organism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, micronucleus (MN) and chromosome aberration (CA) tests in Allium cepa (onion) were carried out in order to make a preliminary characterization of the water quality of the Atibaia River in an area that is under the influence of petroleum refinery and also to evaluate the effectiveness of the treatments used by the refinery. For these evaluations, seeds of A. cepa were germinated in waters collected in five different sites related with the refinery in ultra-pure water (negative control) and in methyl methanesulfonate solution (positive control). According to our results, we can suggest that even after the treatments (physicochemical, biological and stabilization pond) the final refinery effluent could induce chromosome aberrations and micronucleus in meristematic cells of A. cepa and that the discharge of the petroleum refinery effluents in the Atibaia River can interfere in the quality of this river. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we applied Chromosome Aberration (CA) and Micronucleus (MN) tests to Allium cepa root cells, in order to evaluate the water quality of Guaeca river. This river, located in the city of Sao Sebastiao, SP, Brazil, had been affected by an oil pipeline leak. Chemical analyses of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) were also carried out in water samples, collected in July 2005 (dry season) and February 2006 (rainy season) in 4 different river sites. The largest CA and MN incidence in the meristematic cells of A. cepa was observed after exposure to water sample collected during the dry season, at the spring of the river, where the oil leak has arisen. The F, cells from roots exposed to such sample (non-merismatic region) were also analyzed for the incidence of MN, showing a larger frequency of irregularities, indicating a possible development of CA into MN. Lastly, our study reveals a direct correlation between water chemical analyses (contamination by TPHs and PAHs) and both genotoxic and mutagenic effects observed in exposed A. cepa cells. (C) 2007 Elsevier B.V. All rights reserved.