166 resultados para Microbial pathogens
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. on the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The use of masks is generally accepted as a means of protecting the individual against microbial pathogens that might be inhaled in unhealthy environments. The objective of this study was to evaluate the efficiency of disposable surgical masks sold in Brazil, against coliforms in aerosols emitted by the aerators of a sanitary sewage treatment station. The filtration efficiency varied from 50.9% to 99.9% for 6 masks from different sources.
Resumo:
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidiodes brasiliensis that presents a wide spectrum of clinical manifestations. Because of the great number of neutrophils polymorphonuclear neutrophils (PMN) found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. This fungus is found intracellularly in PMN and monocytes/macrophages, suggesting that it is capable of evading damage and surviving inside these cells. Thus, in the present study, we investigated whether P. brasiliensis can prolong the lifetime of PMN, and if this process would be related with IL-8 levels. PMN apoptosis and intracellular levels of IL-8 were analysed by flow cytometry and culture supernatants IL-8 levels were evaluated by enzyme-linked immunosorbent assay. We found that coincubation with P. brasiliensis yeast cells results in an inhibition of PMN apoptosis, which was associated with increase in IL-8 production by these cells. Cocultures treatment with monoclonal antibody anti-IL-8 reversed the inhibitory effect of P. brasiliensis on PMN apoptosis, besides to increase spontaneous apoptosis of these cells. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, P. brasiliensis can extend the lifetime of normal human PMN by inducing autocrine IL-8 production. © 2008 The Authors.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Uncaria tomentosa is considered a medicinal plant used over centuries by the peruvian population as an alternative treatment for several diseases. Many microorganisms usually inhabit the human oral cavity and under certain conditions can become etiologic agents of diseases. The aim of the present study was to evaluate the antimicrobial activity of different concentrations of Uncaria tomentosa on different strains of microorganisms isolated from the human oral cavity. Micropulverized Uncaria tomentosa was tested in vitro to determine the minimum inhibitory concentration (MIC) on selected microbial strains. The tested strains were oral clinical isolates of Streptococcus mutans, Staphylococcus spp., Candida albicans, Enterobacteriaceae and Pseudomonas aeruginosa. The tested concentrations of Uncaria tomentosa ranged from 0.25-5% in Müeller-Hinton agat. Three percent Uncaria tomentosa inhibited 8% of Enterobacteriaceae isolates, 52% of S. mutans and 96% of Staphylococcus spp. The tested concentrations did not present inhibitory effect on P. aeruginosa and C. albicans. It could be concluded that micropulverized Uncaria tomentosa presented antimicrobial activity on Enterobacteriaceae, S. mutans and Staphylococcus spp. isolates.
Resumo:
Purpose: This paper aims to evaluate in vitro antibacterial activity of oregano essential oil against foodborne pathogens as a starting point for the use of spice as a natural preservative in food. Design/methodology/approach: Disc and well-diffusion assays were performed to investigate antibacterial activity of oregano essential oil against six bacteria strains: Bacillus cereus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella Typhimurium. Three concentrations of oregano essential oil were employed: 1.0 percent, 2.0 percent and 5.0 percent. Bacterial growth inhibition was determinate as the diameter of the inhibition zones. Findings: Oregano essential oil showed antibacterial activity against spoilage microorganisms, at different concentrations, except for P. aeruginosa. There was a significant difference between methodologies only for the microorganism S. aureus. The results provided evidence of the existence of significant differences among the concentrations of oregano essential oil for each microorganism evaluated. Research limitations/implications: Although the research for this paper involved only oregano essential oil, it provided a starting-point for further investigations concerning spices as natural preservatives for food systems. Practical implications: Disc and well-assays were found to be simple and reproducible practical methods. Other spices, their essential oil and extracts might be researched against other micro-organisms. Furthermore, in situ studies need to be performed to evaluate possible interactions between essential oils and compounds naturally present in food against microbial strains. Social implications: The imminent adoption of measures to reduce the use of additives in foods and the reduction on using such compounds. Originality/value: This study provides insights that suggest a promising exploratory development of food natural preservative against spoilage microorganisms in food systems by the use of oregano essential oil. © Emerald Group Publishing Limited.
Resumo:
The establishment of a peanut crop may be unsatisfactory due to poor seed performance in the field and among the factors attributed to this are a reduction in seed vigor during storage and the presence of pathogens. The objective of this study was to evaluate the efficiency of treating peanut seeds with fungicides and the effect on physiological performance and disease control during storage. In a completely random experimental design, two seed batches of the Runner IAC 886 peanut cultivar were submitted to five fungicide treatments (1 control - untreated; 2 thiram; 3 carbendazim + thiram; 4 fludioxonil + metalaxyl-m; 5 fludioxonil + mefenoxam + thiabendazole) and evaluated after zero, 30 and 60 days of storage. The seeds were stored untreated but treated before the evaluation of physiological performance from germination, vigor (first germination count and accelerated aging), field seedling emergence and seed sanitation tests. The results showed differences in batch performance potential during storage, with batch 1 being superior. The sanitation test showed that all the chemical seed treatments controlled pathogens efficiently (Aspergillus spp. and Penicillium sp.), but only thiram did not affect peanut seed performance in the laboratory evaluations.
Resumo:
Objective: To characterize the microbial etiology of chronic suppurative otitis media comparing the methods of classical bacteriological culture and polymerase chain reaction.Design/Setting/Patients: Bacteriological analysis by classical culture and by molecular polymerase chain reaction of 35 effusion otitis samples from patients with cleft lip and palate attending the Hospital for Rehabilitation of Craniofacial Anomalies of the University of Sao Paulo, Bauru, Brazil.Interventions: Collection of clinical samples of otitis by effusion through the external auditory tube.Main Outcome Measure: Otolaryngologic diagnosis of chronic suppurative otitis media.Results: Positive cultures were obtained from 83% of patients. Among the 31 bacterial lineages the following were isolated. In order of decreasing frequency: Pseudomonas aeruginosa (54.9%), Staphylococcus aureus (25.9%), and Enterococcus faecalis (19.2%). No anaerobes were isolated by culture. The polymerase chain reaction was positive for one or more bacteria investigated in 97.1% of samples. Anaerobe lineages were detected by the polymerase chain reaction method, such as Fusobacterium nucleatum, Bacteroides fragilis, and Peptostreptococcus anaerobius.Conclusions: Patients with cleft lip and palate with chronic suppurative otitis media presented high frequency of bacterial infection in the middle ear. The classical bacteriological culture did not detect strict anaerobes, whose presence was identified by the polymerase chain reaction method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP)