167 resultados para Microalgae. Biofuel. Photobioreactor. Transesterification
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Waste frying oil has been used to optimize the production of biodiesel. Biodiesel was prepared through sodium ethoxide catalyzed methanolysis from the transesterification of recycled waste frying oil. Optimization of the transesterification reaction for biodiesel production was carried out by means of statistical analyses using ANOVA. The optimum conditions for reaction were the following: a oil methanol mole ratio of 1:9, temperature of 50 degrees C, catalyst mass fraction of 0.9 %, and reaction time of 40 min, which enabled a yield of 98.7 % determined by gas chromatography/mass spectrometry (GC/MS) analysis. The density and viscosity of biodiesel/diesel blends have been determined as a function of composition at several temperatures.
Resumo:
Blast furnace gas yield is essentially controlled by a gas-solid reaction phenomenon, which strongly influences hot metal manufacturing costs. As a result of rising prices for reducing agents on the international market, Companhia Siderurgica Nacional decided to inject natural gas into its blast furnaces. With more gas inside the furnace, the burden permeability became even more critical. To improve blast furnace gas yield, a new technological approach was adopted; raising the metallic burden reaction surface. To that end, a special sinter was developed with permeability being controlled by adding micropore nucleus forming agents, cellulignin coal, without, however, degrading its mechanical properties. This paper shows the main process parameters and the results from physicochemical characterisation of a sinter with controlled permeability, on a pilot scale, compared to those of conventional sinter. Gas flow laboratory simulations have conclusively corroborated the positive effects of micropore nucleus forming agents on enhancing sinter permeability.
Resumo:
This paper evaluates emissions to the atmosphere of biologically available nitrogen compounds in a region characterized by intensive sugar cane biofuel ethanol production. Large emissions of NH(3) and NO,, as well as particulate nitrate and ammonium, occur at the harvest when the crop is burned, with the amount of nitrogen released equivalent to similar to 35% of annual fertilizer-N application. Nitrogen oxides concentrations show a positive association with fire frequency, indicating that biomass burning is a major emission source, with mean concentrations of NO, doubling in the dry season relative to the wet season. During the dry season biomass burning is a source of NH3, with other sources (wastes, soil, biogenic) predominant during the wet season. Estimated NO(2)-N, NH(3)-N, NO(3)(-)-N and NH(4)(+)-N emission fluxes from sugar cane burning in a planted area,of ca. 2.2 x 10(6) ha are 11.0, 1.1, 0.2, and 1.2 Gg N yr(-1), respectively.
Resumo:
The effects of soybean and castorbean meals were evaluated separately, and in combinations at different ratios, as substrates for lipase production by Botryosphaeria ribis EC-01 in submerged fermentation using only distilled water. The addition of glycerol analytical grade (AG) and glycerol crude (CG) to soybean and castorbean meals separately and in combination, were also examined for lipase production. Glycerol-AG increased enzyme production, whereas glycerol-CG decreased it. A 24 factorial design was developed to determine the best concentrations of soybean meal, castorbean meal, glycerol-AG, and KH2PO4 to optimize lipase production by B. ribis EC-01. Soybean meal and glycerol-AG had a significant effect on lipase production, whereas castorbean meal did not. A second treatment (22 factorial design central composite) was developed, and optimal lipase production (4,820 U/g of dry solids content (ds)) was obtained when B. ribis EC-01 was grown on 0.5 % (w/v) soybean meal and 5.2 % (v/v) glycerol in distilled water, which was in agreement with the predicted value (4,892 U/g ds) calculated by the model. The unitary cost of lipase production determined under the optimized conditions developed ranged from US$0.42 to 0.44 based on nutrient costs. The fungal lipase was immobilized onto Celite and showed high thermal stability and was used for transesterification of soybean oil in methanol (1:3) resulting in 36 % of fatty acyl alkyl ester content. The apparent K m and V max were determined and were 1.86 mM and 14.29 μmol min -1 mg-1, respectively. © 2013 Springer Science+Business Media New York.
Resumo:
Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg-1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg-1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Sodium titanate was synthesized by the sol-gel method and characterized using X-ray diffraction, thermogravimetry-mass spectrometry, atomic absorption spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and nitrogen physisorption. The non-calcined material was active as a catalyst in transesterification reactions and showed high stability. An appreciable loss of activity on the fourth reuse was accompanied by the appearance of a new species of oxygen and segregated sodium, identified by X-ray photoelectron spectroscopy (XPS). The XPS spectrum showed that the basic nature of the framework oxygen was inferior to the original basicity, which explained the decline in catalytic activity. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The uninterrupted rise in emission of greenhouse gases open way to the use of biofuels, due to politics that focus on fuel safe, clean and renewable. The use of microalgae for biodiesel production has been described as one of the most promising sources of biomass for biofuels. The aim of this study was to evaluate the extraction and lipid profile of the microalgae Dunaliella tertiolecta, Isochrysis galbana and Tetraselsim gracilis. The extractions were performed with solvents chloroform /methanol and petroleum ether. The lipid profile was analyzed by gas chromatography after transesterification.The petroleum ether showed more efficiency in the extraction, the best result obtained was in the microalgae D. tertiolecta with 19.52% of lipid. The lipid profile analysis indicated a biodiesel stable to oxidation and elevated viscosity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)