8 resultados para Metallic iron

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acicular monodispersed Fe1-xREx (RE= Nd, Sm,Eu,Tb;x=0, 0.05, 0.10) metallic nanoparticles (60 +/- 5 nm in length and axial ratio similar to6) obtained by reduction of alumina-coated goethite nanoparticles-containing rare earth (RE) under hydrogen flow are reported. Alumina and maghemite thin layers on particle surface were used to protect the goethite particles against sintering and oxidation, respectively. Al and RE additions were obtained by successive heterocoagulation reactions. Aluminum sulfate (10 at.% based on Fe) was dissolved in water and the pH adjusted to 12.5 with NaOH solution. Goethite particles were suspended in this solution and CO2 gas was blown into the slurry to neutralize it to a pH 8.5 or less. Particles were purified and dehydrated to effect transformation to alumina-coated hematite nanoparticles, which were re-suspended in aqueous solution in which RE sulfate (0-0.15 at.% based on Fe) has been dissolved, and the pH increased by ammonia aqueous solution addition. Resulted alumina-coated RE-doped hematite nanoparticles were reduced to metal at 450 degreesC/12 h under hydrogen flow and passivated with nitrogen-containing ethanol vapor at room temperature. Acicular monodispersed metallic nanoparticle systems were obtained and the presence of Al and RE were confirmed by induced-coupled plasma spectrometry analysis. X-ray diffraction, Mossbauer spectroscopy, and magnetization data are in agreement with the nanosized alpha-Fe core in a bcc structure, having a spinel structure, gammaFe(2)O(3), with thickness similar to1.5 run on particle surface. Main magnetic parameters showed saturation magnetization decreases and significant increasing in the coercive field with the RE composition increases. Magnetic properties of these particles, similar to40% smaller than those commercially available, suggest a decrease in the bit-size for high-density magnetic or magneto-optics recording media application. (C) 2004 Published by Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mossbauer spectroscopy was used in this study to investigate magnetite nanoparticles, obtained by spray pyrolysis and thermal treatment under H-2 reduction atmosphere. Room temperature XRD data indicate the formation of magnetite phase and a second phase (metallic iron) which amount increases as the time of reduction under H2 is increased. While room temperature Mossbauer data confirm the formation of the cubic phase of magnetite and the occurrence of metallic iron phase, the more complex features of 77 K-Mossbauer spectra suggest the occurrence of electronic localization favored by the different crystalline phase of magnetite at low temperatures which transition to the lower symmetry structure should occur at T similar to 120 K (Verwey transition).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reactive species generated by Fe0 oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe0 concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. © 2013 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The zero-valent iron (ZVI) mediated degradation of the antibiotic ciprofloxacin (CIP) was studied under oxic condition. Operational parameters such as ZVI concentration and initial pH value were evaluated. Increase of the ZVI concentration from 1 to 5 g L−1 resulted in a sharp increase of the observed pseudo-first order rate constant of CIP degradation, reaching a plateau at around 10 g L−1. The contribution of adsorption to the overall removal of CIP and dissolved organic carbon (DOC) was evaluated after a procedure of acidification to pH 2.5 with sulfuric acid and sonication for 2 min. Adsorption increased as pH increased, while degradation decreased, showing that adsorption is not important for degradation. Contribution of adsorption was much more important for DOC removal than for CIP. Degradation of CIP resulted in partial defluorination since the fluoride measured corresponded to 34% of the theoretical value after 120 min of reaction. Analysis by liquid chromatography coupled to mass spectrometry showed the presence of products of hydroxylation on both piperazine and quinolonic rings generating fluorinated and defluorinated compounds as well as a product of the piperazine ring cleavage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ