34 resultados para Metal complex
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Synthesis and characterization of a new Pt(II)-mimosine complex are described. Elemental, mass spectrometry and thermal analyses for the complex are consistent with the formula [PtCl2(C8H10N2O4)]center dot 1.5H(2)O. C-13 NMR, N-15 NMR and infrared spectroscopy indicate coordination of the ligand to Pt(II) through the N and O atoms in a square-planar geometry. The final residue after thermal treatment was identified as metallic Pt. The complex is soluble in dimethylsulfoxide.
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO) 2]SO4 · H2O and [Cu(metSO)2] · H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.
Resumo:
The fac-[RuCl3(NO)(dppb)] complex I has been prepared from solution of the correspondent mer isomer in refluxing methanol (dppb = 1,4-bis(diphenylphosphino)butane). The mer-[RuCl3(NO)(diop)] (II) has been obtained from the mer-[RuCl3(diop)(H2O)] by bubbling NO for 1 h in dichloromethane (diop = 2S,3S-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane). The complexes have been characterized by microanalysis, cyclic voltammetry (CV), IR and 31P{1H} NMR spectroscopies. The crystal and molecular structures of these two compounds have been determined from X-ray studies. The mer-[RuCl3(NO)(dppb)] isomer III was characterized in solution by NMR spectra (31P{1H}, 1H{31P}, 31P-1H HETCORR, COSY 1H-1H, HMQC 1H-13C and HMBC 1H-13C). © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This work presents the synthesis and characterization of SiO2:metal (Ni, Co, Ag, and Fe) nanocomposites processed by the polymerizable complex method. The polymeric precursor solutions obtained were characterized by means of FT-Raman and C-13 NMR spectroscopy. The results show the formation of a hybrid polymer with carbon and silicon in the macromolecule chain and the transition metal cation arrested within this polymeric chain. The nanocomposites are formed during the controlled polymeric precursor pyrolysis. The reduction of the metal cation is promoted by the CO/CO2 atmosphere resulting from the pyrolysis of the organic material. Microstructural characterization, performed by TEM and X-ray diffraction (XRD), showed that the nanocomposites are formed by metal nanoparticles embedded in a amorphous matrix formed by SiO2 and carbon. In the SiO2:Fe system, Fe3C was also detected by XRD.
Resumo:
A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.
Resumo:
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An investigation was made into the photocatalytic activity of in situ synthesized TiO2 chemically modified by Pd(II) 2-aminothiazole complex for phenol degradation at different pH values. At longer reaction times, the bare titania presented far poorer pbotoactivity than the modified catalysts in the entire range of pH studied. The catalyst complexed with Pd(II) was more efficient than the metal-free Pd, irrespective of pH and reaction time, suggesting that metal plays an important role. A cooperative mechanism is proposed, involving the possible photoactivation of both TiO2 and sensitizer. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Solid Ni(C(5)H(10)NO(3)S)(2) . 2H(2)O complex was prepared and characterized. Electronic absorption spectrum shows an octahedral geometry for the complex. Infrared spectroscopy analysis shows that the metal atom is coordinated to the ligand through (COO(-)) and (S = O) groups. Thermal analysis confirmed the composition of the complex and suggests that the water molecules are not coordinated to the metal ion. The complex shows extremely high solubility in water. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
A new trinuclear platinum(II) complex with cysteine of composition [Pt(C3H6NO2S)Cl](3)center dot(C2H6SO)(3) was obtained and structurally characterized by X-ray diffraction and infrared analysis. The compound crystallizes in the trigonal system, space group R3, and is described in a hexagonal cell with a=17.739(1), c=9.531(1) and Z=3. Cysteine is coordinated to Pt(II) through the nitrogen and sulphur atoms. Each cysteine sulphur bridges between two metal atoms. A square planar coordination sphere of platinum is completed by a chlorine atom. The complex is soluble in dimethyl sulfoxide.
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Resumo:
The binding and availability of metals (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Zn) in therapeutically applied peat (GroBes Gifhorner Moor, Sassenburg/North Germany) was characterized by means of a versatile extraction approach. Aqueous extracts of peat were obtained by a standardized batch equilibrium procedure using high-purity water (pH 4.5 and 5.0), 0.01 mol l(-1) calcium chloride solution, 0.0 1 mol l(-1) ethylenediaminetetraacetic acid (EDTA) and 0.01 mol l(-1) diethylenetriarnine pentaacetic acid (DTPA) solution as metal extractants. In addition, the availability of peat-bound metal species was kinetically studied by collecting aliquots of extracts after different periods of extraction time (5, 10, 15, 30, 60 and 120 min). Metal determinations were performed by atomic spectrometry methods (AAS, ICP-OES) and dissolved organic matter (DOM) was characterized by UV/Vis measurements at 254 and 436 nm, respectively. of the extractants studied Ca, Mg and Mn were the most available metals, in contrast to peat-bound Fe and Al. The relative standard deviation s(r) of the developed extraction procedures was mostly in the range of 4 to 20%, depending on the metal and its concentration in peat. A pH increase favored the extraction of metals and DOM from peat revealing complex extraction kinetics. Moreover, a competitive exchange between peat-bound metal species and added Cu(II) ions showed that > 100 mg of Cu(II) per 50 g wet peat was necessary to exchange the maximum of bound metals (e.g. 21.8% of Al, 3.9% of Fe, 79.0% of Mn, 81.9% of Sr, related to their total content). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, a hydrophilic clay, Na-montmorillonite from Wyoming, USA, was rendered organophilic by exchanging the inorganic interlayer cations for hexaclecyltrimethylammonium ions (HDTA), with the formulae of [(CH3)(3)N(C16H33)](+) ion. Based on fact that organo-clay has high affinities for non-ionic organic molecules, 1,3,4-thiadiazole-2,5-dithiol was loaded oil the HDTA-montmorillonite surface, resulting in the 1,3,4-thiadiazole-2,5-dithiol-HDTA-montmorillonite complex (TDD-organo-clay).The following properties of TDD-organo-clay are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II).The main point of this paper is the construction of a selective sensor, a carbon paste electrode modified with TDD-organo-clay, its properties and its application to the determination of mercury(II) ions, as this element belongs to the most toxic metals. The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The complexes (NH4)(2)[ MoO2( C2H2O3)(2)]center dot H2O, (NH4)(2)[MoO2(C8H6O3)(2)] and (NH4)(2) [MoO3(C4H4O6)]center dot H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X- ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO- is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the alpha-carbon. The glycolate molybdenum complexes with general formula M-2[MoO2(C2H2O3)(2)]center dot nH(2)O, where M is an alkali metal and n=1 or 1/2, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV- radiation.