18 resultados para Metal bonding.

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present work was to carry out experimental comparison between humic substances (HS) and representative α-amino acids (methionine, methionine sulfoxide and cysteine hydrochloride) in relation to the complexation of biologically active trace elements (Al, Cu, Pb, Mn, Zn, Cd and Ni). A mobile time-controlled tangential-flow UF technique was applied to differentiate between HS-metal and α-aminoacids-metal complexes. Metal determinations were conventionally carried out using a ICP-OES. The results showed that HS may be considered as a selective complexing agents with higher metal bonding capability in relation to Al, Cu and Pb, the fact that may be clinically important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ligas de alumínio são extensamente usadas em partes aeronáuticas devido às boas propriedades mecânicas e baixa densidade. Estas partes devem ser unidas para formar conjuntos maiores. Uma junta estrutural é definida como um segmento de estrutura que provê um meio de transferir carga de um elemento estrutural para outro. A maioria das juntas aeronáuticas é mecanicamente fixada com múltiplos prendedores (parafusos ou rebites). Estas juntas apresentam uma alta concentração de tensões ao redor do prendedor, porque a transferência de carga entre elementos da junta acontece em uma fração da área disponível. Por outro lado, as cargas aplicadas em juntas adesivas são distribuídas sobre toda a área colada e reduz os pontos de concentração de tensão. Juntas são a fonte mais comum de falhas estruturais em aeronaves e quase todos os reparos envolvem juntas. Portanto, é importante entender todos os aspectos de projeto e análise de juntas. O objetivo deste trabalho é comparar estaticamente juntas estruturais de ligas de Al2024-T3 em três condições: juntas mecanicamente rebitadas, juntas coladas e uma configuração híbrida rebitada e colada. Foi usada a norma NASM 1312-4 para confecção dos corpos-de-prova. Além disso, foram conduzidos testes de fadiga, sob amplitude de carregamento constante e razão de tensão igual a 0,1 para avaliar a eficiência dos elementos estruturais durante sua vida em serviço. Os resultados mostraram que a configuração híbrida apresenta maior resistência estática e uma vida em fadiga superior à configuração colada.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To assess the effect of metal conditioners on the bond strength between resin cements and cast titanium. Method and Materials: Commercially pure titanium (99.56%) was cast using an arc casting machine. Surfaces were finished with 400-grit silicon carbide paper followed by air abrasion with 50-mu m aluminum oxide. A piece of double-coated tape with a 4-mm circular hole was then positioned on the metal surface to control the area of the bond. The prepared surfaces were then divided into 4 groups (n=10): G1, unprimed Panavia F; G2, Alloy Primer-Panavia F; G3, unprimed Bistite DC; G4, Metaltite-Bistite DC. Forty minutes after insertion of the resin cements, the specimens were detached from the mold and stored in water at 37 C for 24 hours. Shear bond strength was performed in a testing machine (MTS 810) at a crosshead speed of 0.5 mm/min. Data were analyzed using ANOVA and Tukey's test with a .05 significance level. The fractured surfaces were observed through an optical microscope at 10x magnification. Results: the G1 group demonstrated significantly higher shear bond strength (17.95 MPa) than the other groups. G3 (13.79 MPa) and G4 (12.98 MPa) showed similar mean values to each other and were statistically superior to G2 (9.31 MPa). Debonded surfaces generally presented adhesive failure between metal surfaces and resin cements. Conclusion: While the Metaltite conditioner did not influence the bond strength of the Bistite DC cement, the Alloy Primer conditioner significantly decreased the mean bond strength of the Panavia F cement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cementation procedure of metal-free fixed partial dentures exhibits special characteristics about the porcelains and cementation agents, which turns the correct association between these materials necessary. Our purpose in this literature review was to point the main groups of cements associated to metal-free restoration and discuss about the advantages, disadvantages, and recommendations of each one. Our search was confined to the electronic databases PubMed and SciELO and to books about this matter. There are essentially 3 types of hard cement: conventional, resin, or a hybrid of the two. The metal-free restorations can be fixed with conventional or resin cements. The right choice of luting material is of vital importance to the longevity of dental restorative materials. Conventional cements are advantageous when good compressive straight, good film thickness, and water dissolution resistance are necessary. However, they need an ideal preparation, and they are not acid dissolution resistant. Conventional cements are indicated to porcelains that cannot be acid etched. Resin cements represent the choice to metal-free restoration cementation because they present better physical properties and aesthetic than conventional agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of the current study was to evaluate different approaches for bonding composite to the surface of yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics.Methods: One hundred Y-TZP blocks were embedded in acrylic resin, had the free surface polished, and were randomly divided into 10 groups (n=10). The tested repair approaches included four surface treatments: tribochemical silica coating (TBS), methacryloxydecyldihidrogenphosphate (MDP)-containing primer/silane, sandblasting, and metal/zirconia primer. Alcohol cleaning was used as a "no treatment" control. Surface treatment was followed by the application (or lack thereof) of an MDP-containing resin cement liner. Subsequently, a composite resin was applied to the ceramic surface using a cylindrical mold (4-mm diameter). After aging for 60 days in water storage, including 6000 thermal cycles, the specimens were submitted to a shear test. Analysis of variance and the Tukey test were used for statistical analyses (alpha=0.05).Results: Surface treatment was a statistically significant factor (F=85.42; p<0.0001). The application of the MDP-containing liner had no effect on bond strength (p=0.1017). TBS was the only treatment that had a significantly positive effect on bond strength after aging.Conclusion: Considering the evaluated approaches, TBS seems to be the best surface treatment for Y-TZP composite repairs. The use of an MDP-containing liner between the composite and Y-TZP surfaces is not effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the enamel/resin/metal bond tensile strength by using human canines, in which castings were bonded. These castings were obtained by Co-Cr or Ni-Cr alloys and showed four types of mechanisms of retention: 50 micrograms aluminum oxide abrasive, electrochemical etch, acrylic beads metal mesh. The castings were bonded utilizing Comspan Opaque and Panavia Ex. The specimens were subjected to tensile forces after 24 hours in an Instron machine. The castings subjected to 50 micrograms aluminum oxide abrasive and bonded utilizing Panavia EX showed the biggest bond tensile strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface formed between the metal and the porcelain of laser-welded Ni-Cr-Mo alloy was studied on a metallurgical basis. The characterization was carried out by using optical microscope, electron scan microscopy and X-ray dispersive spectroscopy techniques and mechanical three-point flexion tests, in the laser-welded region, with and without porcelain. The union of the porcelain with the alloy is possible only after the oxidation of the metallic surface and the subsequent application of a bonding agent known as opaque. The porcelain applied to the base metal and weld bead showed different behaviours - after the flexion test, the base metal showed cracks, while that in the weld bead broke away completely. It was noted that the region subjected to laser welding had lower adherence to the porcelain than the base metal region, due to microstructural refinement of the weld bead. These results can be shown by the X-ray dispersive spectroscopy carried out on the regions studied. The flexion tests demonstrated that the Ni-Cr-Mo alloy subject to laser welding had significant alterations in its mechanical properties after application of the porcelain.