11 resultados para Mesocortical dopamine system

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A maioria dos estudos pré-clínicos e clínicos aponta a nicotina como o principal agente responsável pelo desenvolvimento da dependência ao tabaco. Muitos trabalhos têm demonstrado que as bases neurais da dependência à nicotina são semelhantes àquelas das outras drogas de abuso. A nicotina induz preferência condicionada por lugar e auto-administração e, portanto, atua como reforçador positivo, esse efeito parece ser mediado pelo sistema dopaminérgico mesolímbico. A nicotina também induz à sensibilização comportamental que é provavelmente resultante de alterações da expressão gênica do núcleo acumbens induzidas pela exposição prolongada a essa substância. A suspensão do uso de nicotina resulta em síndrome de abstinência. As evidências indicam que esses sinais e sintomas sejam mediados por receptores colinérgicos nicotínicos centrais e periféricos. Outros neurotransmissores, como por exemplo a serotonina e os peptídeos opióides, também podem estar envolvidos na mediação da dependência e síndrome de abstinência à nicotina. A revisão da literatura mostra a complexidade dos efeitos da nicotina no organismo. A integração entre as abordagens comportamental, neuroquímica e molecular possibilitará a compreensão dos mecanismos neurais da dependência ao tabaco e fornecerá as bases para o desenvolvimento racional de agentes terapêuticos que possam ser utilizados para o tratamento da dependência e síndrome de abstinência ao tabaco.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of repeated administration of fenproporex (FEN) on motor activity of rats were studied. FEN-treated group (5.0 mg/kg, i.p., single dose, 7 consecutive days), showed a marked increase in the motor activity of rats, indicating that the drug induced behavioral sensitization. Repeated coadministration of haloperidol prevented the development of sensitization to repeated administration of FEN. Repeated administration of FEN increased also locomotor activity measured in the open field, ratifying the occurence of sensitization. These findings indicated development of sensitization to repeated FEN administration and that the dopamine system might be involved in the mechanism of sensitization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bruxism is the harmful habit of clenching or grinding the teeth during the day and / or night, with unconscious pattern, with particular intensity and frequency, outside the functional movements of chewing and swallowing. It is accepted that bruxism is a response controlled by the neurotransmitters dopamine system associated with emotional component. The proposed of treatment of bruxism with acupuncture aims to stimulate sensory fibers of the peripheral nervous system leading to electrical transmission by neurons sufficient to produce changes in the central nervous system. As a consequence there is the release of substances (cortisol, endorphins, dopamine, noradrenaline and serotonin) that promote wellness and restoration of harmony, be it psychological, biological and / or behavioral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of prenatal exposure of rat pups to 0.08 mg/kg deltamethrin (DTM) on physical, reflex and behavioral developmental parameters, on forced swimming and open-field behaviors, and on striatal monoamine levels at 60 days of age were observed. Maternal and offspring body weight, physical and reflex development were unaffected by the exposure to the pesticide. At 21 days of age, open-field locomotion frequency and immobility duration of male and female offspring were not different between control and exposed animals. However, male rearing frequency was increased in experimental animals. A decreased immobility latency to float and in general activity after the swimming test in male offspring was observed at adult age; no interference was detected in the float duration during the swimming test. In addition, these animals presented higher striatal 3,4-dihydroxyphenylacetic acid (DOPAC) levels without modification in dopamine (DA) levels and an increased DOPAC/DA ratio. These data indicate a higher activity of the dopaminergic system in these animals. Noradrenaline (NA) levels were increased, while MHPG levels were not detectable in the system studied. Serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels, as well as the homovanillic acid (HVA)/DA ratio, were not modified by the exposure to the pesticide. No changes were observed in swimming and open-field behaviors nor were there any changes in striatal monoamines or their metabolites in the female experimental group. In relation to the pesticide formula, the present data showing that prenatal exposure to DTM alters latency to float and the activity of striatal dopaminergic system might reflect a persistent effect of the pesticide on animal motor activity, mainly in males. on the other hand, the decrease in general activity observed in experimental male rats suggests higher levels of emotionality induced by previous exposure to the swimming behavior test in relation to control animals. Data gathered in the present study may be important for the assessment of the safety of pyrethroid insecticides. (C) 2001 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fencamfamine (FCF) is a psychostimulant classified as an indirect dopamine agonist. The conditioning place preference (CPP) paradigm was used to investigate the reinforcing properties of FCF. After initial preferences had been determined, animals were conditioned with FCF (1.75, 3.5, or 7.0 mg/kg; IP). Only at the dose of 3.5 mg/kg FCF produced a significant place preference. Pretreatment with SCH23390 (0.05 mg/kg, SC) or naloxone (1.0 mg/kg SC) 10 min before FCF (3.5 mg/kg; IP) blocked both FCF-induced hyperactivity and CPP. Pretreatment with metoclopramide (10.0 mg/kg; IP) or pimozide (1.0 mg/kg, IP), respectively, 30 min or 4 h before FCF (3.5 mg/kg; IP), which blocked the FCF-induced locomotor activity, failed to influence place conditioning produced by FCF. In conclusion, the present study suggests that dopamine D 1 and opioid receptors are related to FCF reinforcing effect, while dopamine D 2 subtype receptor was ineffective in modifying FCF-induced CPP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fencamfamine (FCF) is a central stimulant that facilitates central dopaminergic transmission through inhibition of dopamine uptake and enhanced release of the transmitter. We evaluated the changes in the inhibition of uptake and the release of striatal [ 3H]-dopamine at 9:00 and 21:00 h, times corresponding to maximal and minimal behavioral responses to FCF, respectively. Adult male Wistar rats (200-250 g) maintained on a 12-h light/12-h dark cycle (lights on at 7:00 h) were used. In the behavioral experiments the rats (N = 8 for each group) received FCF (3.5 mg/kg, ip) or saline at 9:00 or 21:00 h. Fifteen minutes after treatment the duration of activity (sniffing, rearing and locomotion) was recorded for 120 min. The basal motor activity was higher (28.6 ± 4.2 vs 8.4 ± 3.5 s) after saline administration at 21:00 h than at 9:00 h. FCF at a single dose significantly enhanced the basal motor activity (38.3 ± 4.5 vs 8.4 ± 3.5 s) and increased the duration of exploratory activity (38.3 ± 4.5 vs 32.1 ± 4.6 s) during the light, but not the dark phase. Two other groups of rats (N = 6 for each group) were decapitated at 9:00 and 21:00 h and striata were dissected for dopamine uptake and relase assays. The inhibition of uptake and release of [ 3H]-dopamine were higher at 9:00 than at 21:00 h, suggesting that uptake inhibition and the release properties of FCF undergo daily variation. These data suggest that the circadian time-dependent effects of FCF might be related to a higher susceptibility of dopamine presynaptic terminals to the action of FCF during the light phase which corresponds to the rats' resting period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.