71 resultados para Membrane Potential

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

American trypanosomiasis or Chagas disease is a debilitating disease representing an important social problem that affects, approximately, 10 million people in the world. The main aggravating factor of this situation is the lack of an effective drug to treat the different stages of this disease. In this context, the search for trypanocidal substances isolated from plants, synthetic or semi synthetic molecules, is an important strategy. Here, the trypanocidal potential of gallates was assayed in epimastigotes forms of T. cruzi and also, the interference of these substances on the mitochondrial membrane potential of the parasites was assessed, allowing the study of the mechanism of action of the gallates in the T. cruzi organisms. Regarding the preliminary structure-activity relationships, the side chain length of gallates plays crucial role for activity. Nonyl, decyl, undecyl, and dodecyl gallates showed potent antitrypanosomal effect (IC50 from 1.46 to 2.90 μM) in contrast with benznidazole (IC50 = 34.0 μM). Heptyl gallate showed a strong synergistic activity with benznidazole, reducing by 105-fold the IC50 of benznidazole. Loss of mitochondrial membrane potential induced by these esters was revealed. Tetradecyl gallate induced a loss of 53% of the mitochondrial membrane potential, at IC50 value.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Monocrotaline is a pyrrolizidine alkaloid present in plants of the Crotalaria species, which causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline. We evaluated the effects of monocrotaline and its metabolite on respiration, membrane potential and ATP levels in isolated rat liver mitochondria, and on respiratory chain complex I NADH oxidase activity in submitochondrial particles. Dehydromonocrotaline, but not the parent compound, showed a concentration-dependent inhibition of glutamate/malate-supported state 3 respiration (respiratory chain complex 1), but did not affect succinate-supported respiration (complex II). Only dehydromonocrotaline dissipated mitochondrial membrane potential, depleted ATP, and inhibited complex I NADH oxidase activity (IC50 = 62.06 mu M) through a non-competitive type of inhibition (K-I = 8.1 mu M). Therefore, dehydromonocrotaline is an inhibitor of the activity of respiratory chain complex I NADH oxidase, an action potentially accounting for the well-documented monocrotaline's hepatotoxicity to animals and humans. The mechanism probably involves change of the complex I conformation resulting from modification of cysteine thiol groups by the metabolite. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the quality of bovine frozen-thawed sperm cells after Percoll gradient centrifugation. Frozen semen doses were obtained from six bulls of different breeds, including three taurine and three Zebu animals. Four ejaculates per bull were evaluated before and after discontinuous Percoll gradient centrifugation. Sperm motility was assessed by computer-assisted semen analysis and the integrity of the plasma and acrosomal membranes, as well as mitochondrial function, were evaluated using a combination of fluorescent probes propidium iodide, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. The procedure of Percoll gradient centrifugation increased the percentage of total and progressive sperm motility, beat frequency, rectilinear motility, linearity and rapidly moving cells. In addition, the percentage of cells with intact plasma membrane and mitochondrial membrane potential was increased in post-centrifugation samples. However, the percentage of sperm cells with intact acrosomal membrane was markedly reduced. The method used selected the motile cells with intact plasma membrane and higher mitochondrial functionality in frozen-thawed bull semen, but processing, centrifugation and/or the Percoll medium caused damage to the acrosomal membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied changes in mitochondrial morphology and function in the smooth muscle of rat colon. Under confocal microscopy, tissues loaded with potentiometric dye displayed rapid and spontaneous depolarization. Cyclosporin A (CsA), inhibitor of the permeability transition pore (PTP), caused an increase in mitochondrial membrane potential (DeltaPsi(m)) in tissues from adult young animals. In aged rats these changes were not observed. This suggests that physiological activation of PTP in aged rats is reduced. Electron microscopy showed alterations of the mitochondrial ultrastructure in tissues from aged rats involving a decreased definition of the cristae and fragmentation of the mitochondrial membranes. We also detected an increase in apoptotic cells in the smooth muscle from aged animals. Our results show that the aging process changes PTP activity, the ability to maintain DeltaPsi(m) and mitochondrial morphology. It is suggested that these can be associated with mitochondrial damage and cell death. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analytical solution of the Poisson-Boltzmann equation in an electrolyte with four ionic species (2:2:1:1), in the presence of a charged planar membrane or surface is presented. The function describing the mean electrical potential provides a convenient description that helps the understanding of electrical processes of biological interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Idiosyncratic hepatotoxicity is a well-known complication associated with aromatic antiepileptic drugs (AAED), and it has been suggested to occur due to the accumulation of toxic arene oxide metabolites. Although there is clear evidence of the participation of an immune process, a direct toxic effect involving mitochondria dysfunction is also possible. The effects of AAED on mitochondrial function have not been studied yet. Therefore, we investigated, in vitro, the cytotoxic mechanism of carbamazepine (CB), phenytoin (PT) and phenobarbital (PB), unaltered and bioactivated, in the hepatic mitochondrial function. The murine hepatic microsomal system was used to produce the anticonvulsant metabolites. All the bioactivated drugs (CB-B, PB-B, PT-B) affected mitochondrial function causing decrease in state three respiration, RCR, ATP synthesis and membrane potential, increase in state four respiration as well as impairment of Ca(2+) uptake/release and inhibition of calcium-induced swelling. As an unaltered drug, only PB, was able to affect mitochondrial respiration (except state four respiration) ATP synthesis and membrane potential; however, Ca(2+) uptake/release as well as swelling induction were not affected. The potential to induce mitochondrial dysfunction was PT-B > PB-B > CB-B > PB. Results suggest the involvement of mitochondrial toxicity in the pathogenesis of AAED-induced hepatotoxicity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we show that safranine at the concentrations usually employed as a probe of mitochondrial membrane potential significantly protects against the oxidative damage of mitochondria induced by Fe(II)citrate. The effect of safranine was illustrated by experiments showing that this dye strongly inhibits both production of thiobarbituric acid-reactive substances and membrane potential decrease when energized mitochondria were exposed to Fe(II)citrate in the presence of Ca 2+ ions. Similar results were obtained with the lipophylic compound trifluoperazine. It is proposed that, like trifluoperazine, safranine decreases the rate of lipid peroxidation due to its insertion in the membrane altering the physical state of the lipid phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.