2 resultados para Melamine
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
According to ABIPA (2009), Brazil is currently among the major producers of reconstituted wood panels, with one of the main factors for this condition, its climate and its large land area, which allows the cultivation of forests, which provide raw materials for these industries. To establish that market as power, Brazil has invested about R$ 1.3 billion in the last 10 years, yet designed an investment of 0.8 billion dollars over the next three years (BNDES, 2008). With the new investments in this segment, we expect a growth of about 66% in the resin consumption of urea-formaldehyde (GPC, 2009) which should also result in major investments by the companies producing this polymer. Currently employees are mainly three types of resins in the production industry panels, as follows: Urea-Formaldehyde Resin (R-UF), melamine-formaldehyde resin (R-MF) and Phenol-Formaldehyde Resin (R-FF). Especially the cost factor, the urea-formaldehyde resin is the most used by companies producing reconstituted wood panels. The UF-R is a polymer obtained by condensation of urea and formaldehyde reactors (usually batch type), characterized by being a thermosetting polymer which makes it very efficient for bonding wood composites. The urea-formaldehyde polymer, to present a quite complex, it becomes very difficult to predict the exact chain resulting in the process of condensation of urea with formaldehyde, so that a greater knowledge of its characteristics and methods for their characterization can result in greater control in industrial processes and subsequent decrease cost and improve the quality of reconstituted wood panels produced in Brazil
Resumo:
Thermosetting resins are very important in the production of MDF panels. They act as an adhesive in the process of compacting and consolidating the fiberboard. Thermoset resins commonly used in this process are based resin urea formaldehyde (UF) and melamine formaldehyde (MF). The first has a higher demand due to its low cost and good performance in meeting the specifications and standards. The second has a high cost compared to MF resin, but adds greater value to the MDF panel, because it gives greater moisture resistance. The process of manufacture of MDF boards was briefly presented in this study to facilitate the understanding of the work. Samples of thermosetting resins (UF and MF) were subjected to physical-chemical seeking to relate these results to the technological performance presented by their respective samples of MDF boards. Two other samples of MDF panels were subjected to physical and mechanical tests. Results were analyzed and related to the award of their respective thermoset resin. Instruments like Dahmos Trend Manager ® and Grecon Dax 5000 and TG - DSC analysis were used in this study to assist in the analysis of the results. It was observed that the results of the analysis of thermosetting resins were within the specified. Such resins do not directly influence the technological tests provided by the MDF panels, but it has been found that the process variables such as humidity and fiber production rate interfere with the performance of the resin accelerating the reaction and therefore their influence on the physical-mechanical properties of the panels MDF. Samples of MDF panels with UF and MF met all the specifications required by the Brazilian standard with regard to the technological quality. The increased demand for UF resin market is justified by the service specifications...