2 resultados para Median Matrix

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal and cell studies indicate an inhibitory effect of matrix metalloproteinase-8 (MMP8) on tumorigenesis and metastasis. We investigated whether MMP8 gene variation was associated with breast cancer metastasis and prognosis in humans. We first studied nine tagging single nucleotide polymorphisms (SNP) in the MMP8 gene in 140 clinically and pathologically well-characterized breast cancer patients. Four of the SNPs were found to be associated with lymph node metastasis, the most pronounced being a promoter SNP (rs11225395) with its minor allele (T) associating with reduced susceptibility to lymph node metastasis (P = 0.02). This SNP was further evaluated for association with cancer relapse and survival among a cohort of similar to 1,100 breast cancer patients who had been followed for cancer recurrence and mortality for a median of 7.1 years. The T allele was associated with reduced cancer relapse and greater survival, particularly among patients with earlier stage cancer. Among patients of tumor-node-metastasis stage 0 to 11, the adjusted hazard ratio of disease-free survival was 0.7 [95% confidence interval (95% CI), 0.5-0.9] for patients carrying T allele compared with those homozygous for the C allele (P = 0.02). In vitro experiments showed that the T allele had higher promoter activity than the C allele in breast cancer cells. Electrophoretic mobility shift assays showed binding of nuclear proteins to the DNA sequence at the SNP site of the T allele but not that of the C allele. The data suggest that MMP8 gene variation may influence breast cancer prognosis and support the notion that MMP8 has an inhibitory effect on cancer metastasis.