28 resultados para Matrix degrading enzymes

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil management practices are konwn to affect the biomass and enzyme activities of microbial soil communities. To assess whether burning of sugarcane prior to harvesting affects the community of soilborne fungi, we collected soil simples in two sites: burned sugarcane culture prior harvesting (BS) and non-burned sugarcane culture (NBS). A total of 75 filamentous fungal isolates were recovered from soils in both sites. Trichoderma was the most prevalent genus in both sites, followed by Fusarium, Cunninghamella and Aspergillus. The Sorensen's index (0.60) suggested a slight difference in fungi associated with both areas, with high number of fungal isolates found on BB soil. The abundance of Trichoderma isolates in NBS soil was higher than BS soil; however, the abundance of Fusarium, Aspergillus and Cunninghamella was higher in the latter type of soil. In addition, fungi isolated from BS soil showed the highest production of xylanase and laccase in comparision with fungi isolated form NBS soil. Our results indicate that the different types of sugarcane harvesting apparently did not interfere with the diversity of fungal communnities as revealed by culture-dependent methods. In addition, our data indicates the potencial of fungi from soils of sugarcane crops to produce relevant enzymes related to biomass conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A formação de aerênquimas é conhecida como uma das mais importantes adaptações anatômicas pelas quais as plantas passam quando são submetidas à deficiência de oxigênio. Esse tecido se desenvolve pela ação de enzimas de degradação ou afrouxamento da parede celular. Este trabalho foi conduzido com o objetivo de verificar o desenvolvimento de aerênquima em plântulas de milho cv. Saracura- BRS 4154, submetidas à hipoxia. Associou-se, ao desenvolvimento dessa estrutura, a atividade da celulase. Para tanto, plântulas com 4 dias de idade foram submetidas aos tratamentos de hipoxia, pela imersão em tampão de alagamento, na ausência e presença de cálcio. Após 0, 1, 2, 3 e 4 dias da aplicação dos tratamentos, foram feitos cortes anatômicos na região apical dos coleóptiles e na região intermediária da raiz para a avaliação da formação de aerênquimas, e coletado o material para os ensaios enzimáticos de celulase. A atividade celulase foi medida através de método viscosimétrico. Nas raízes, a formação de aerênquima aumentou logo após a hipoxia e atingiu 50% do total do córtex ao quarto dia de hipoxia. Este órgão apresentou uma área cortical com aerênquima em média sete vezes maior que nos coleóptiles, onde a área de espaços intercelulares atingiu 15% do córtex. A atividade da celulase em coleóptiles e raízes sofreu, inicialmente, um decréscimo devido ao estresse, aumentando em seguida, acompanhando os resultados de aerênquima. Na presença de cálcio o desenvolvimento de aerênquima foi inibido; no entanto, a atividade enzimática foi induzida.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xylella fastidiosa 9a5c (XF-9a5c) and Xanthomonas axonopodis pv. citri (XAC) are bacteria that infect citrus plants. Sequencing of the genomes of these strains is complete and comparative analyses are now under way with the genomes of other bacteria of the same genera. In this review, we present an overview of this comparative genomic work. We also present a detailed genomic comparison between XF-9a5a and XAC. Based on this analysis, genes and operons were identified that might be relevant for adaptation to citrus. XAC has two copies of a type II secretion system, a large number of cell wall-degrading enzymes and sugar transporters, a complete energy metabolism, a whole set of avirulence genes associated with a type III secretion system, and a complete flagellar and chemotatic system. By contrast, XF-9a5c possesses more genes involved with type IV pili biosynthesis than does XAC, contains genes encoding for production of colicins, and has 4 copies of Type I restriction/modification system while XAC has only one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leaf-cutting ants belonging to the tribe Attini are major herbivores and important agriculture pests in the neotropics, these ants being thought to feed on the sap which exudes from the plant material which they cut and also on the mycelium of a symbiotic fungus that grows on plant material inside their nests in what is called 'the fungus garden'. However, we have found that the survival of Atta sexdens worker ants on leaves, on mycelium. of the ants' symbiotic fungus, Leucoagaricus gongylophorus, or on plant polysaccharides was the same as that of starved A. sexdens, while, conversely, significantly longer survival was achieved by ants fed on the fungus garden material or on some of the products (especially glucose) of the hydrolysis of plant polysaccharides. We found that the fungus garden contained glucose at a higher concentration than that found in leaves or fungal mycelium, and that this glucose was consumed by the ant to the extent that it was probably responsible for up to 50% of the nutritional needs of the workers. The fungus garden contained polysaccharide degrading enzymes (pectinase, amylase, xylanase and cellulase) in proportions similar to that observed in laboratory cultures of L. gongylophorus. It thus appears that A. sexdens workers obtain a significant part of their nutrients from plant polysaccharide hydrolysis products produced by the action of extracellular enzymes released by L. gongylophorus. In this paper we discuss the symbiotic nutrition strategy of A. sexdens workers and brood and the role played by plant polysaccharides in the nutrition of attine ants. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutualistic associations shape the evolution in different organism groups. The association between the leaf-cutter ant Atta sexdens and the basidiomycete fungus Leucoagaricus gongylophorus has enabled them to degrade starch from plant material generating glucose, which is a major food source for both mutualists. Starch degradation is promoted by enzymes contained in the fecal fluid that ants deposit on the fungus culture in cut leaves inside the nests. To understand the dynamics of starch degradation in ant nests, we purified and characterized starch degrading enzymes from the ant fecal fluid and from laboratory cultures of L. gongylophorus and found that the ants intestine positively selects fungal α-amylase and a maltase likely produced by the ants, as a negative selection is imposed to fungal maltase and ant α-amylases. Selected enzymes are more resistant to catabolic repression by glucose and proposed to structure a metabolic pathway in which the fungal α-amylase initiates starch catalysis to generate byproducts which are sequentially degraded by the maltase to produce glucose. The pathway is responsible for effective degradation of starch and proposed to represent a major evolutionary innovation enabling efficient starch assimilation from plant material by leaf-cutters. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)