31 resultados para Matrix algebra
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.
Resumo:
For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.
Resumo:
This paper presents an analyze of numeric conditioning of the Hessian matrix of Lagrangian of modified barrier function Lagrangian method (MBFL) and primal-dual logarithmic barrier method (PDLB), which are obtained in the process of solution of an optimal power flow problem (OPF). This analyze is done by a comparative study through the singular values decomposition (SVD) of those matrixes. In the MBLF method the inequality constraints are treated by the modified barrier and PDLB methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables and are perturbed by the barrier parameter. The first-order necessary conditions of the Lagrangian function are solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. The electric systems IEEE 14, 162 and 300 buses were used in the comparative analysis. ©2007 IEEE.
Resumo:
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper introduces the concept of special subsets when applied to generator matrices based on lattices and cosets as presented by Calder-bank and Sloane. By using the special subsets we propose a non exhaustive code search for optimum codes. Although non exhaustive, the search always results in optimum codes for given (k1, V, Λ/Λ′). Tables with binary and ternary optimum codes to partitions of lattices with 8, 9 e 16 cosets, were obtained.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
The iterative quadratic maximum likelihood IQML and the method of direction estimation MODE are well known high resolution direction-of-arrival DOA estimation methods. Their solutions lead to an optimization problem with constraints. The usual linear constraint presents a poor performance for certain DOA values. This work proposes a new linear constraint applicable to both DOA methods and compare their performance with two others: unit norm and usual linear constraint. It is shown that the proposed alternative performs better than others constraints. The resulting computational complexity is also investigated.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem and the H2-norm controller reduction problem, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through linear matrix inequalities formulations. Examples illustrate the results.
Resumo:
A basis-set calculation scheme for S-waves Ps-He elastic scattering below the lowest inelastic threshold was formulated using a variational expression for the transition matrix. The scheme was illustrated numerically by calculating the scattering length in the electronic doublet state: a=1.0±0.1 a.u.