5 resultados para Materials science.

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of x-ray absorption spectroscopy (XAS) with UV-Vis and Raman spectroscopies or with Differential Scanning Calorimetry (DSC) has been recently carried out on the D44 beamline of DCI-LURE. The different set-ups used to perform such combinations are described and examples of combined investigations belonging to different field of materials science (coordination chemistry, sol-gel and catalysis) are presented. © Physica Scripta 2005.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this work was the preparation of inorganic mesoporous materials from silica, calcium phosphate and a nonionic surfactant and to evaluate the incorporation and release of different concentrations of osteogenic growth peptide (OGP) for application in bone regeneration. The adsorption and release of the labeled peptide with 5,6-carboxyfluorescein (OGP-CF) from the mesoporous matrix was monitored by fluorescence spectroscopy. The specific surface area was 880 and 484 m2 g- 1 for pure silica (SiO) and silica/apatite (SiCaP), respectively; the area influenced the percentage of incorporation of the peptide. The release of OGP-CF from the materials in simulated body fluid (SBF) was dependent on the composition of the particles, the amount of incorporated peptide and the degradation of the material. The release of 50% of the peptide content occurred at around 4 and 30 h for SiCaP and SiO, respectively. In conclusion, the materials based on SiO and SiCaP showed in vitro bioactivity and degradation; thus, these materials should be considered as alternative biomaterials for bone regeneration. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aimof this study was to evaluate the stress distribution on bone tissue with a single prosthesis supported by implants of large and conventional diameter and presenting different veneering materials using the 3-D finite elementmethod. Sixteenmodels were fabricated to reproduce a bone block with implants, using two diameters (3.75 × 10 mmand 5.00 × 10 mm), four different veneering materials (composite resin, acrylic resin, porcelain, and NiCr crown), and two loads (axial (200 N) and oblique (100 N)). For data analysis, the maximum principal stress and vonMises criterion were used. For the axial load, the cortical bone in allmodels did not exhibit significant differences, and the trabecular bone presented higher tensile stresswith reduced implant diameter. For the oblique load, the cortical bone presented a significant increase in tensile stress on the same side as the loading for smaller implant diameters. The trabecular bone showed a similar but more discreet trend. There was no difference in bone tissue with different veneering materials. The veneering material did not influence the stress distribution in the supporting tissues of single implant-supported prostheses. The large-diameter implants improved the transference of occlusal loads to bone tissue and decreased stress mainly under oblique loads.Oblique loading was more detrimental to distribution stresses than axial loading. © 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)