6 resultados para Malvern
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study evaluated the wound healing activity of a glycolic extract of Dillenia indica (GED) prepared from the mature fruits of the plant applied alone or in combination with microcurrent stimulation to skin wounds surgically induced on the back of Wistar rats. Methods. The animals were randomly divided into six groups: (A) negative control group; (B) group receiving microcurrent application (MC; [10 mu A/2 mins]); (C) group treated with GED; (D) group treated with an emulsion containing GED; (E) group treated with GED and MC, and (F) group treated with the emulsion containing GED and MC. Tissue samples were obtained 2, 6, and 10 days after injury and underwent structural and morphometric analysis, Results. There were observed differences in wound healing among the various treatments when compared to the control group. The combination of microcurrent plus extract or microcurrent plus emulsion containing GED was advantageous in all of the studied parameters (P < 0.05) when compared to the other groups with positive effects seen regarding newly formed tissue, number of fibroblasts, and number of newly formed blood vessels. The morphometric data confirmed the structural findings. Conclusion. Microcurrent application alone or combined with GED exerted significant effects on wound healing in this experimental model. This was probably due to the efficacy of microcurrent application since the extract alone did not significantly accelerate the healing process. D indica fruit extract most likely participates in the wound healing process as a result of its anti-inflammatory properties.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to verify the influence of adjuvants on the droplet spectrum of an air induction nozzle. The experiment used nine spray solutions, one including only water and eight containing adjuvants: Nimbus® (mineral oil), Óleo vegetal Nortox (vegetal oil), Li-700® (a mixture of lecithin and propionic acid), Agral® (nonyl phenoxy poly ethanol), In-Tec® (nonyl phenol ethoxylate), Antideriva (nonyl phenol ethoxylate), Silwet® L-77 Ag (copolymer polyester and silicon) and TA 35 (sodium lauryl ether sulfate). A flat fan air induction nozzle Hypro® Guardian Air 110 03 was used for the droplet spectrum evaluation. The study was conducted at the Laboratory for Particle Size Analysis (Lapar), at FCAV/UNESP, Jaboticabal/SP - Brazil. The determination of the droplet spectrum characteristics (Volume Median Diameter/VMD, percentage of droplets smaller than 100 micrometers and span) was carried out by a particle size analyzer by laser diffraction Mastersizer S (Malvern Instruments). For statistical analysis the mean values were compared using Confidence Interval at 95% (CI 95%). The results showed that for the Hypro® GA air induction nozzle the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) increased the VMD. The percentage of droplets smaller than 100 micrometers was lower for the Agral®, Antideriva, In-Tec® e TA 35, in comparison with the Óleo Vegetal Nortox and Li-700®. The span was higher for the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) and lower for the TA 35 (sodium lauryl ether sulfate), showing that the TA 35 adjuvant has a potential to improve the quality of the droplet spectrum of the Hypro® GA 11003 nozzle.
Resumo:
The present study had as objectives to verify the effect of rainfastness of different flutriafol formulations, in laboratory conditions, applied on soybean plants with and without the oil adjuvant in the spray solution, as well as to verify the influence of the oil on the droplet spectrum. The experiment considered ten spray solutions related to five treatments containing flutriafol (four formulations of flutriafol and a flutriafol mixture with tebuconazole), all applied with and without mineral oil. Particles size analysis were based on the determination of the droplet spectrum, medium volumetric diameter and the amount of droplets below 100 μm. All the solutions were sprayed with Teejet XR 11001 (fine droplets). Droplet spectrum was determined in a direct way by diffraction of laser (Malvern Mastersizer S®, version 2.15). Confidence interval at 90% degree was used to compare the mean data. The results showed that the addition of mineral oil in the solutions provided tendencies of larger medium volumetric diameter, smaller amount of droplets below than 100 µm and better uniformity of the droplet spectrum. All of the solutions with the addition of mineral oil presented larger adhesion and/or absorption of the fungicide on the plants in comparison with the solutions without oil. The increase of the time between the application and the rain, caused reduction of the fungicide removal, independently of the rain intensity. The increase of the amount of rain didn't change the relative behavior among the solutions; however, this larger amount of rain caused larger fungicide removal along the time. It was observed significant removal of flutriafol by the rain up to 48 hours after the spray application.