2 resultados para Magnetic ranges

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically Detected Magnetic Resonance (EDMR) was used to investigate the influence of dye doping molecules on spin-dependent exciton formation in Aluminum (III) 8-hydroxyquinoline (Alq(3)) based OLEDs with different device structures and temperature ranges. 4-(dicyanomethylene)-2-methyl-6-{2-[(4-diphenylamino-phenyl]ethyl}-4H-pyran (DCM-TPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) were used as dopants. A strong temperature dependence have been observed for doped OLEDs, with a decrease of two orders of magnitude in EDMR signal for temperatures above similar to 200 K. The signal temperature dependence were fitted supposing different spin-lattice relaxation processes. The results suggest that thermally activated vibrations of dopants molecules induce spin pair dissociation, reducing the signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report magnetic data of free standing films of poly( aniline) (PANI) protonated with a plasticizing di-ester of succinic acid. The data have been obtained using the electron spin resonance (ESR) technique at two different frequencies, X-band (9.4 GHz) and Q-band ( 34 GHz), on one hand, and by magnetization measurements in broad ranges of temperatures and magnetic fields on the other hand. All the data can be explained assuming a transition as a function of temperature from delocalized magnetic moments in the valence band to localized positive polarons in several antiferromagnetically correlated bands. By increasing the magnetic field, the magnetic properties are affected in several ways. An intra-band admixture of states occurs; it contributes to increase the spins' localization and finally promotes an antiferromagnetic-metamagnetic transition.