127 resultados para Macrophages péritonéaux

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effect of Yersinia derivatives on nitric oxide (NO), hydrogen peroxide (H2O2) and tumor necrosis factor-alpha (TNF-alpha) production by murine peritoneal macrophages was investigated. Addition of lipopolysaccharide (LPS) to the macrophage culture resulted in NO production that was dose dependent. on the other hand, bacterial cellular extract (CE) and Yersinia outer proteins (Yops) had no effect on NO production. The possible inhibitory effect of Yops on macrophage cultures stimulated with LPS was investigated. Yops partially inhibited NO production (67.4%) when compared with aminoguanidine. The effects of Yersinia derivatives on H2O2 production by macrophages were similar to those on NO production. LPS was the only derivative that stimulated H2O2 release in a dose-dependent manner. All Yersinia derivatives provoked the production of TNF-alpha, but LPS had the strongest effect, as observed for NO production. CE and Yops stimulated TNF-alpha production to a lesser extent than LPS. The results indicate the possibility that in vivo Yops may aid the evasion of the bacteria from the host defense mechanism by impairing the secretion of NO by macrophages. (C) 2003 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of ten compounds isolated from Brazilian lichen over the release of hydrogen peroxide and nitric oxide was evaluated in the culture of peritoneal macrophage cells from mice. Salazinic, secalonic A and fumarprotocetraric acids were the compounds that induced the greatest release of H2O2, whereas 12R-usnic and diffractaic acids induced the release of NO. These results indicate that lichen products have potential immunological modulating activities. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An essential key to pathogenicity in Yersinia is the presence of a 70 kb plasmid (pYV) which encodes a type-III secretion system and several virulence outer proteins whose main function is to enable the bacteria to survive in the host. Thus, a specific immune response is needed in which cytokines are engaged. The aim of this study was to assess the influence of Yersinia outer proteins (Yops) released by Yersinia pseudotuberculosis on the production of the proinflammatory cytokines, interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-alpha), and nitric oxide (NO) by murine peritoneal macrophages. To this end, female Swiss mice were infected intravenously with wild-type Y pseudotuberculosis or with mutant strains unable to secrete specific Yops (YopE, YopH, YopJ, YopM, and YpkA). on the 7th, 14th, 21st, and 28th days after infection, the animals were sacrificed and the cytokines and NO were assayed in the peritoneal macrophages culture supernatants. A fall in NO production was observed during the course of infection with all the strains tested, though during the infection with the strains that did not secrete YopE and YopH, the suppression occurred later. There was, in general, an unchanged or sometimes increased production of TNF-alpha between the 7th and the 21st day after infection, compared to the control group, followed by an abrupt decrease on the last day of infection. The IL-12 production was also suppressed during the infection, with most of the strains tested, except with those that did not secrete YopJ and YopE. The results suggest that Yops may suppress IL-12, TNF-alpha, and NO production and that the most important proteins involved in this suppression are YopE and YopH. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thalidomide is a selective inhibitor of tumor necrosis factor-alpha (TNF-alpha), a cytokine involved in mycobacterial death mechanisms. We investigated the role of this drug in the functional activity of alveolar macrophages in the presence of infection induced by intranasal inoculation of Mycobacterium avium in thalidomide-treated and untreated adult Swiss mice. Sixty animals were inoculated with 5 x 10(6) M. avium by the respiratory route. Thirty animals received daily thalidomide (30 mg/kg mouse) and 30 received water by gavage up to sacrifice. Ten non-inoculated mice were used as a control group. Lots of animals from each group were evaluated until 6 weeks after inoculation. Infection resulted in an increased total number of inflammatory cells as well as increased activity of pulmonary macrophages. Histologically, intranasal inoculation of bacilli resulted in small mononuclear infiltrates located at the periphery of the organ. Culture of lung fragments revealed the presence of bacilli only at the beginning and at the end of the experimental period. Thalidomide administration did not affect the microbiological or histological features of the infection. Thalidomide-treated and untreated animals showed the same amount of M. avium colonies 3 weeks after infection. Although it did not affect bacillary clearance, thalidomide administration resulted in a decreased percent of spread cells and release of hydrogen peroxide, suggesting that factors other than TNF-alpha play a role in the killing of mycobacteria by alveolar macrophages. Thalidomide administration also reduced the number of spread cells among resident macrophages, suggesting a direct effect of the drug on this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a deep mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. Macrophage activation by cytokines is the major effector mechanism against this fungus. This work aimed at a better understanding of the interaction between yeast cells-murine peritoneal macrophages and the cytokine signals required for the effective killing of high virulence yeast-form of P. brasiliensis. In addition, the killing effector mechanisms dependent on the generation of reactive oxygen or nitrogen intermediates were investigated. Cell preincubation with IFN-gamma or TNF-alpha, at adequate doses, resulted in effective yeast killing as demonstrated in short-term (4-h) assays. Both, IFN-gamma and TNF-alpha activation were associated with higher levels of H(2)O(2) and NO when compared to nonactivation. Treatment with catalase (CAT), a H(2)O(2) scavenger, and N(G)-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor, reverted the killing effect of activated cells. Taken together, these results suggest that both oxygen and L-arginine-nitric oxide pathways play a role in the killing of highly virulent P. brasiliensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. In the present study, the role of macrophages and mast cells in mineral trioxide aggregate (MTA)-induced release of neutrophil chemotactic factor was investigated.Study design. MTA suspension (50 mg/mL) was plated over inserts on macrophages or mast cells for 90 minutes. Untreated cells served as controls. Cells were washed and cultured for 90 minutes in RPMI without the stimuli. Macrophages and mast cell supernatants were injected intraperitoneally (0.5 mL/cavity), and neutrophil migration was assessed 6 hours later. In some experiments, cells were incubated for 30 minutes with dexamethasone (DEX, 10 mu M/well), BWA4C (BW, 100 mu M/well) or U75302 (U75, 10 mu M/well). The concentration of Leukotriene B-4 (LTB4) in the cell-free supernatant from mast cells and macrophage culture was measured by ELISA.Results. Supernatants from MTA-stimulated macrophages and mast cells caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages and mast cells was significantly inhibited by DEX, BW, or U75. Macrophages and mast cells expressed mRNA for interleukin-1 (IL-1)beta and macrophage inflammatory protein-2 (MIP-2) and the pretreatment of macrophages and mast cells with DEX, BW, or U75 significantly altered IL-1 beta and MIP-2 mRNA expression. LTB4 was detected in the MTA-stimulated macrophage supernatant but not mast cells.Conclusions. MTA-induces the release of neutrophil chemotactic factor substances from macrophages and mast cells with participation of IL-1 beta, MIP-2, and LTB4. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e135-e142)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Endodontic chelators may extrude to apical tissues during instrumentation activating cellular events on periapical tissues. This study assessed in vitro the expression of nitric oxide (NO) concentrations by murine peritoneal macrophages after contact with MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna Laboratori Farmaceutici, Muggio, Italy), Smear Clear (Sybron Endo, Orange, CA), and EDTA (Biodinamica, Ibipora, PR, Brazil). Methods: Macrophage cells were obtained from Swiss mice after peritoneal lavage. Chelators were diluted in distilled water obtaining 12 concentrations, and MTT assay identified the concentrations, per group, displaying the highest cell viability (analysis of variance, p < 0.01). Selected concentrations were tested for NO expression using Griess reaction. Culture medium and lipopolysaccharide (LPS) were used as controls. Results: Analysis of variance and Tukey tests showed that all chelators displayed elevated NO concentrations compared with the negative control (p < 0.01). MTAD induced the lowest NO expression, followed by Tetraclean, EDTA, and Smear Clear. No difference was observed between MTAD and Tetraclean (p > 0.01), Tetraclean and EDTA (p > 0.01), and EDTA and Smear Clear (p > 0.01). LPS ranked similar to both EDTA and Smear Clear (p > 0.01). Conclusion: The tested endodontic chelators displayed severe proinflammatory effects on murine-cultured macrophages. Citric acid-based solutions induce lower No release than EDTA-based irrigants. (J Endod 2009;35:824-828)