2 resultados para Macaques
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Tropical rain forest conservation requires a good understanding of plant-animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i. e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration. © 2013 Springer Science+Business Media New York.
Resumo:
The current understanding of hormonal regulation of matrix metalloproteinase-26 (MMP-26) in the primate endometrium is incomplete. The goal of this work was to clarify estrogen and progesterone regulation of MMP-26 in the endometrium of ovariectomized, hormone-treated rhesus macaques.Ovariectomized rhesus macaques (n 66) were treated with estradiol (E-2), E-2 plus progesterone, E-2 followed by progesterone alone or no hormone. Endometrium was collected from the hormone-treated animals during the early, mid- and late proliferative and secretory phases of the artificial menstrual cycle. MMP-26 expression was quantified by real-time PCR, and MMP-26 transcript and protein were localized by in situ hybridization and immunohistochemistry and correlated with estrogen receptor 1 and progesterone receptor (PGR).MMP-26 was localized to glandular epithelium and was undetectable in the endometrial stroma and vasculature. MMP-26 transcript levels were minimal in the hormone-deprived macaques and treatment with E-2 alone did not affect MMP-26 levels. Treatment with progesterone both in the presence and absence of E-2 stimulated MMP-26 expression in the early and mid-secretory phases (P 0.001). MMP-26 expression preceded decidualization of endometrial stroma. MMP-26 levels then declined to baseline in the late secretory phase (P 0.01) despite continued E-2 plus progesterone treatment. Loss of detectable MMP-26 expression in the late secretory phase was correlated with late secretory phase loss of glandular epithelial PGR.Endometrial MMP-26 expression is dependent on the presence of progesterone in the early secretory phase and then gradually becomes refractory to progesterone stimulation in the late secretory phase. In the macaque, MMP-26 is a marker of the pre-decidual, secretory endometrium. During the second half of the late secretory phase, and during decidualization, MMP-26 loses its response to progesterone concurrent with the loss of epithelial PGR. The decline in MMP-26 levels between the mid- and late secretory phases may play a role in the receptive window for embryo implantation.