39 resultados para MICROBAND GOLD ELECTRODE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A method for the total mercury determination in fish and shrimps employing chronopotentiometric stripping analysis on gold film electrodes is described. Fish and shrimp tissues were digested using a microwave oven equipped with closed vessels. We developed a microwave heating program which decomposed all the samples employing diluted nitric acid and hydrogen peroxide. The proposed method was validated by analyzing a certified reference material and then applied for different fish species from fresh water and seawater acquired in local markets of São Paulo city, Brazil. The Brazilian legislation establishes 0.5 and 1 mg per kilogram of fish as upper limit of mercury for omnivorous and predator species, respectively. Except for blue shark tissues, the mercury content was situated below 0.5 mu g g(-1) for all the analyzed samples. The detection limit of the proposed method was calculated as 5 ng g(-1) of sample utilizing 5 minutes of electrodeposition (+300 mV vs. Ag/AgCl) on the gold electrode. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this work we describe a versatile and very sensitive way for copper quantification by potentiometric stripping analysis using gold electrodes obtained from recordable compact disks (CDs). This new source of electrodes (CDtrodes) shown similar performance to the commercial gold electrodes with superior versatility and lower cost. Recordable CDs contains a highly pure gold film with thickness between 50 and 100 nm and superficial area of ca. 100 cm(2). The working electrode developed was used successfully in stationary cell and many experimental parameters have been optimized. For copper, the detection limit attained was 30 ng L-1 (600 s deposition time) with remarkable precision (standard deviation of 1.8 % for 20 repetitive measurements using 25 mu gL(-1) of copper with 60 s of deposition time). The gold electrode developed was used for analysis of copper in sugar cane spirits and tap water samples. The results were compared with those obtained by atomic absorption spectroscopy.
Resumo:
In a typical protocol for attaching DNA to a gold electrode, thiolated DNA is incubated with the electrode at neutral pH overnight. Here we report fast adsorption of non-thiolated DNA oligomers on gold electrodes at acidic pH (i.e., pH ~3.0). The peak-to-peak potential difference and the redox peak currents in typical cyclic voltammetry of [Fe(CN)6]3- are investigated to monitor the attachment. Compared with incubation at neutral pH, the lower pH can significantly promote the adsorption processes, enabling efficient adsorption even in 30min. The adsorption rate is DNA concentration-dependent, while the ionic strength shows no influence. Moreover, the adsorption is base-discriminative, with a preferred order of A>C≫G, T, which is attributed to the protonation of A and C at low pH and their higher binding affinity to gold surface. The immobilized DNA is functional and can hybridize with its complementary DNA but not a random DNA. This work is promising to provide a useful time-saving strategy for DNA assembly on gold electrodes, allowing fast fabrication of DNA-based biosensors and devices. © 2013 Elsevier Inc.
Resumo:
Chitosan is alternated with sulfonated polystyrene (PSS) to build layer-by-layer (LBL) films that are used as sensing units in an electronic tongue. Using impedance spectroscopy as the principle method of detection, an array using chitosan/PSS LBL film and a bare gold electrode as the sensing units was capable of distinguishing the basic tastes - salty, sweet, bitter, and sour - to a concentration below the human threshold. The suitability of chitosan as a sensing material was confirmed by using this sensor to distinguish red wines according to their vintage, vineyard, and brands.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Trypanosoma cruzi proteins from epimastigote membranes, herein referred as antigens, have been used for the construction of an amperometric immunosensor for serological diagnosis of Chagas' disease. The proteins used had a molecular mass ranging from 30 to 100 kDa. The gold electrode was treated with cysteamine and glutaraldehyde prior to antigen immobilization. Antibodies present in the serum of patients with Chagas' disease were captured by the immobilized antigens and the affinity interaction was monitored by chronoamperometry at a potential of -400 mV (versus Ag pseudo-reference electrode) using peroxidase-labeled IgG conjugate and hydrogen peroxide, iodide substrate. The incubation time to allow maximum antigen-antibody and antibody-peroxidase-labeled IgG interactions was 20 min with a reactivity threshold at -0.104 mu A. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conjugated polymers have been subject of great interest in the recent literature from both fundamental point of view and applied science perspective. Among the several types of conjugated polymers used in recent investigations, polythiophene and its derivatives have attracted considerable attention over the past 20 years due to their high mobility and other remarkable solid-state properties. They have potential applications in many fields, such as microelectronic devices, catalysts, organic field-effect transistors, chemical sensors, and biosensors. They have been studied as gas and volatile organic compounds (VOCs) sensors using different principles or transduction techniques, such as optical absorption, conductivity, and capacitance measurements. In this work, we report on the fabrication of gas sensors based on a conducting polymer on an interdigitated gold electrode. We use as active layer of the sensor a polythiophene derivative: poly (3-hexylthiophene) (P3HT) and analyzed its conductivity as response for exposure to dynamic flow of saturated vapors of six VOCs [n-hexane, toluene, chloroform, dichloromethane, methanol, and tetrahydrofuran (THE)]. Different responses were obtained upon exposure to all VOCs, THF gave the higher response while methanol the lower response. The influence of moisture on the measurements was also evaluated. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Levodopa (L-dopa), the biological precursor of catecholamines, is the most widely prescribed drug in the treatment of Parkinson's disease. The present work presents a proposal for the application of a gold screen-printed electrode an electrochemical sensor for monitoring L-dopa in stationary solution and a flow system. Using the electrooxidation of L-dopa at +0.63 V in acetate buffer pH 3.0 on a gold screen-printed electrode it is possible to obtain a linear calibration curve from 9.9 x 10(-5) to 1.2 x 10(-3) mol L-1 and a detection limit of 6.8 x 10(-5) mol L-1. Under amperometric conditions (E-app = 0.8 V; flow rate = 14.1 ml, min(-1); pH 3.0), an analytical calibration graph for L-dopa was obtained from 1.0 x 10(-6) mol L-1 6.6 x 10(-4) mol L-1 with a detection limit of 9.9 x 10(-7) mol L-1. The method was successfully applied to the determination of L-dopa in commercial dosage forms without any pre-treatment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this communication we report a proof of concept study of the use of cyclic voltammetry with a polyeugenol-modified glassy carbon (GC) electrode to selectively detect L-cysteine in the presence of both DL-homocysteine and glutathione in perchloric acid. The formation of a polyeugenol-modified gold electrode is also reported for the first time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)