67 resultados para MEDIAL PREOPTIC AREA
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of da antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and da actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of da through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of da through D, receptors and in other part by inhibition of stimulatory action of da through D2 receptors.
Resumo:
The existence of neural connections between the medial preoptic area (MPOA) and the salivary glands and the increase in salivation by thermal or electrical stimulation of the MPOA have suggested an important role of MPOA in the control of salivary gland function. Although direct cholinergic activation of the salivary glands induces salivation, recent studies have suggested that salivation produced by i.p. pilocarpine may also depend on the activation of central mechanisms. Therefore, in the present study, we investigated the effects of bilateral electrolytic lesions of the MPOA on the salivation induced by i.p. pilocarpine. Adult male Holtzman rats (n = 11-12/group) with bilateral sham or electrolytic lesions of the MPOA were used. One, five, and fifteen days after the brain surgery, under ketamine anesthesia, the salivation was induced by i.p. pilocarpine (1 mg/kg of body weight), and saliva was collected using preweighted small cotton balls inserted into the animal's mouth. Pilocarpine-induced salivation was reduced 1 and 5 days after MPOA lesion (341 +/- 41 and 310 +/- 35 mg/7 min, respectively, vs. sham lesions 428 +/- 32 and 495 +/- 36 mg/7 min, respectively), but it was fully recovered at the 15th day post-lesion (561 +/- 49 vs. sham lesion: 618 27 mg/7 min). Lesions of the MPOA did not affect baseline non-stimulated salivary secretion. The results confirm the importance of MPOA in the control of salivation and suggest that its integrity is necessary for the full sialogogue effect of pilocarpine. However, alternative mechanisms probably involving other central nuclei can replace MPOA function in chronically lesioned rats allowing the complete recovery of the effects of pilocarpine. (c) 2006 Published by Elsevier B.V.
Resumo:
In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.
Resumo:
The microinjection of carbachol into the medial preoptic area (MPO) of the rat induced natriuresis, kaliuresis and anti-diuresis in a dose-related manner. Atropine blocked all responses to carbachol. Hexamethonium impaired the dose-response effect of carbachol on kaliuresis, but had no effect on natriuresis and enhanced the antidiuretic effect of carbachol. Nicotine alone had no effects, but pre-treatment with nicotine enhanced the responses to carbachol. These data show that activity of the muscarinic receptors of the MPO increases renal electrolyte and reduces water excretion. They also suggest that nicotinic receptors have an inhibitory effect on water excretion. Nicotine could act through mechanisms unrelated to nicotinic receptors to enhance the effect of the carbachol. © 1989.
Resumo:
In this study we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (A(1) AVP) and [Adamanteanacatyl(1),D-ET-D-Tyr(2), Va1(4), aminobutyril(6) ,As-8,As-9]-AVP 9 (A(2)AVP), antagonists of V-1 and V-2 arginine(8)-vasopressin (AVP) receptors, respectively, as well as the effects of losartan and CGP42112A, antagonists of angiotensin II (ANGII) AT(1) and AT(2), receptors, respectively, on water and 0.3 M sodium intake induced by water deprivation or sodium depletion (furosemide treatment) and enhanced by AVP injected into the medial septal area (N4SA). A stainless steel carmulawas implanted into the medial septal area (NISA) of male Holtzman rats AVP injection enhanced water and sodium intake in a dose-dependent manner. Pretreatment with V-1 antagonist injected into the MSA produced a dose-dependent reduction, whereas prior injection of V-2 antagonist increased, in a dose-dependent manner, the water and sodium responses elicited by the administration of AVP. Both AT(1) and AT(2) antagonists administered into the MSA elicited a concentration-dependent decrease in water and sodium intake induced by AVP, while simultaneous injection of the two antagonists was more effective in decreasing AVP responses. These results also indicate that the increase in water and sodium intake induced by AvT was mediated primarily by MSA AT(1) receptors. (c) 2007 Published by Elsevier B.V.
Resumo:
We determined the effects of moxonidine and rilmenidine 20 mol (alpha(2)-adrenergic and imidazoline receptor agonists) injected into the medial septal area (MSA) on the pilocarpine-induced salivation, when injected intraperitoneally (i.p.), of male Holtzman rats weighing 250300 g, with stainless-steel cannula implanted into the MSA. The rats were anesthetized with zoletil 50 mg kg(-1) b.wt. (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle intramuscularly (IM), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The pre-treatment with moxonidine injected into the MSA reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (12 +/- 3 mg min(-1)) vs. control (99 +/- 9 mg min(-1)). The pre-treatment with rilmenidine 40 nmol also reduced the salivation induce by pilocarpine injected i.p. (20 +/- 5 mg min(-1)) vs. control (94 +/- 7 mg min(-1)). Idazoxan 40 nmol (imidazoline receptor antagonist) injected into the MSA previous to moxonidine and rilmenidine partially blocked the effect of moxonidine and totally blocked the rilmenidine effect in pilocarpine-induced salivation injected i.p. (60 +/- 8 and 95 +/- 10 mg min(-1), respectively). Yohimbine 40 nmol (alpha(2)-adrenergic receptor antagonist) injected into the MSA previously to moxonidine and rilmenidine partially blocked the moxonidine effect but produced no change on the rilmenidine effect on i.p. pilocarpine-induced salivation (70 +/- 6 and 24 +/- 6 mg min(-1), respectively). Injection of these alpha(2)-adrenergic and imidazoline agonists and antagonists agents i.p. produced no change on i.p. pilocarpine-induced salivation. These results show that central, but not peripheral, injection of alpha(2)-adrenergic and imidazoline agonists' agents inhibit pilocarpine-induced salivation. Idazoxan, an imidazoline receptor antagonist, totally inhibits the rilmenidine effect and partially inhibits the moxonidine effect on pilocarpine-induced salivation. Yohimbine produced no change on rilmenidine effect but partially inhibited the moxonidine effect. Both of these antagonists when injected into the MSA previous to pilocarpine i.p. potentiated the sialogogue effect of pilocarpine. The results suggest that alpha(2)-adrenergic/imidazoline receptor of the MSA when stimulated blocked pilocarpine-induced salivation in rats when injected intraperitonially These receptors of the medial septal area have an inhibitory mechanism on salivary secretion. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 mug/mul), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 mug/mul) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 mug/mul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)