62 resultados para MARKOV CHAIN MONTE CARLO

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties-and, in some cases, rewards-that introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the maximum continuous interruption duration (MCID) per customer.This parameter is responsible for the majority of penalties in many electric distribution utilities. This paper describes analytical and Monte Carlo simulation approaches to evaluate probability distributions of interruption duration indices. More emphasis will be given to the development of an analytical method to assess the probability distribution associated with the parameter MCID and the correspond ng penalties. Case studies on a simple distribution network and on a real Brazilian distribution system are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties, and in some cases rewards, which introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the Maximum Continuous Interruption Duration per customer (MCID). This paper describes a chronological Monte Carlo simulation approach to evaluate probability distributions of reliability indices, including the MCID, and the corresponding penalties. In order to get the desired efficiency, modern computational techniques are used for modeling (UML -Unified Modeling Language) as well as for programming (Object- Oriented Programming). Case studies on a simple distribution network and on real Brazilian distribution systems are presented and discussed. © Copyright KTH 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi utilizada uma análise de segregação com o uso da inferência Bayesiana para estimar componentes de variância e verificar a presença de genes de efeito principal (GEP) influenciando duas características de carcaça: gordura intramuscular (GIM), em %, e espessura de toucinho (ET), em mm; e uma de crescimento, ganho de peso (g/dia) dos 25 aos 90 kg de peso vivo (GP). Para este estudo, foram utilizadas informações de 1.257 animais provenientes de um delineamento de F2, obtidos do cruzamento de suínos machos Meishan e fêmeas Large White e Landrace. No melhoramento genético animal, os modelos poligênicos finitos (MPF) podem ser uma alternativa aos modelos poligênicos infinitesimais (MPI) para avaliação genética de características quantitativas usando pedigrees complexos. MPI, MPF e MPI combinado com MPF foram empiricamente testados para se estimar componentes de variâncias e número de genes no MPF. Para a estimação de médias marginais a posteriori de componentes de variância e de parâmetros, foi utilizada uma metodologia Bayesiana, por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC), via Amostrador de Gibbs e Reversible Jump Sampler (Metropolis-Hastings). em função dos resultados obtidos, pode-se evidenciar quatro GEP, sendo dois para GIM e dois para ET. Para ET, o GEP explicou a maior parte da variação genética, enquanto, para GIM, o GEP reduziu significativamente a variação poligênica. Para a variação do GP, não foi possível determinar a influência do GEP. As herdabilidades estimadas ajustando-se MPI para GIM, ET e GP foram de 0,37; 0,24 e 0,37, respectivamente. Estudos futuros com base neste experimento que usem marcadores moleculares para mapear os genes de efeito principal que afetem, principalmente GIM e ET, poderão lograr êxito.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O conhecimento do genoma pode auxiliar na identificação de regiões cromossômicas e, eventualmente, de genes que controlam características quantitativas (QTLs) de importância econômica. em um experimento com 1.129 suínos resultantes do cruzamento entre machos da raça Meishan e fêmeas Large White e Landrace, foram analisadas as características gordura intramuscular (GIM), em %, e ganho dos 25 aos 90 kg de peso vivo (GP), em g/dia, em 298 animais F1 e 831 F2, e espessura de toucinho (ET), em mm, em 324 F1 e 805 F2. Os animais das gerações F1 e F2 foram tipificados com 29 marcadores microsatélites. Estudou-se a ligação entre os cromossomos 4, 6 e 7 com GIM, ET e GP. Análises de QTL utilizando-se metodologia Bayesiana foram aplicadas mediante três modelos genéticos: modelo poligênico infinitesimal (MPI); modelo poligênico finito (MPF), considerando-se três locos; e MPF combinado com MPI. O número de QTLs, suas respectivas posições nos três cromossomos e o efeito fenotípico foram estimados simultaneamente. Os sumários dos parâmetros estimados foram baseados nas distribuições marginais a posteriori, obtidas por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC). Foi possível evidenciar dois QTLs relacionados a GIM nos cromossomos 4 e 6 e dois a ET nos cromossomos 4 e 7. Somente quando se ajustou o MPI, foram observados QTLs no cromossomo 4 para ET e GIM. Não foi possível detectar QTLs para a característica GP com a aplicação dessa metodologia, o que pode ter resultado do uso de marcadores não informativos ou da ausência de QTLs segregando nos cromossomos 4, 6 e 7 desta população. Foi evidenciada a vantagem de se analisar dados experimentais ajustando diferentes modelos genéticos; essas análises ilustram a utilidade e ampla aplicabilidade do método Bayesiano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT